LEARNING MADE EASY

D)D
"/ 3rd Edition

Python* for
Data Science

dummies

A Wiley Brand

John Paul Mueller
Luca Massaron

Coauthors of Artificial Intelligence For
Dummies

Wondershare

Trial Version Q% PDFelement

Python® for Data Science For Dummies®

To view this book's Cheat Sheet, simply go to
www.dummies.com and search for “Python for Data
Science For Dummies Cheat Sheet” in the Search box.

Table of Contents

Cover
Title Page
Copyright

Introduction
About This Book
Foolish Assumptions

Icons Used in This Book

Beyond the Book

Where to Go from Here

Part 1: Getting _Started with Data Science and Python

Chapter 1: Discovering_the Match between Data
Science and Python

Understanding Python as a Language

Defining_Data Science

Creating_the Data Science Pipeline

Understanding_Python’s Role in Data Science

Learning_to Use Python Fast

Chapter 2: Introducing Python’s Capabilities and
Wonders

Working_with Python

Performing_Rapid Prototyping_and Experimentation

.- Wondershare

Trial Version

PDFelement

Considering_Speed of Execution

Visualizing_Power

Using_the Python Ecosystem for Data Science

Chapter 3: Setting Up Python for Data Science
Working_with Anaconda

Installing_ Anaconda on Windows

Installing Anaconda on Linux

Installing_ Anaconda on Mac OS X

Downloading the Datasets and Example Code

Chapter 4: Working with Google Colab
Defining_Google Colab

Working_with Notebooks

Performing Common Tasks

Using_Hardware Acceleration

Executing_the Code

Viewing_Your Notebook
Sharing_Your Notebook

Getting_ Help
Part 2: Getting_Your Hands Dirty with Data

Chapter 5: Working with Jupyter Notebook
Using_Jupyter Notebook

Performing_Multimedia and Graphic Integration

Chapter 6: Working with Real Data
Uploading, Streaming,_ and Sampling_ Data

Accessing Data in Structured Flat-File Form

Sending_Data in Unstructured File Form

Managing Data from Relational Databases

Interacting_ with Data from NoSQL Databases

Accessing_Data from the Web

Wondershare

Trial Version l- PDFelement

Chapter 7: Processing _Your Data
Juggling_ between NumPy and pandas

Validating_Your Data

Manipulating Categorical Variables

Dealing_with Dates in Your Data

Dealing_with Missing Data

Slicing_and Dicing: Filtering and Selecting Data

Concatenating_and Transforming
Aggregating Data at Any Level

Chapter 8: Reshaping Data
Using_the Bag_of Words Model to Tokenize Data
Working with Graph Data

Chapter 9: Putting What You Know into Action
Contextualizing Problems and Data

Considering_the Art of Feature Creation
Performing_Operations on Arrays

Part 3: Visualizing Information
Chapter 10: Getting a Crash Course in Matplotlib
Starting with a Graph
Setting_the Axis, Ticks, and Grids
Defining_the Line Appearance

Using_Labels, Annotations, and Legends
Chapter 11: Visualizing_the Data

Choosing_the Right Graph

Creating_ Advanced Scatterplots

Plotting Time Series

Plotting_ Geographical Data

Visualizing Graphs

Part 4: Wrangling_Data

Wondershare

Trial Version l- PDFelement

Chapter 12: Stretching Python’s Capabilities
Playing_with Scikit-learn

Using_Transformative Functions

Considering_Timing_and Performance

Running_in Parallel on Multiple Cores

Chapter 13: Exploring Data Analysis
The EDA Approach

Defining_Descriptive Statistics for Numeric Data

Counting_for Categorical Data

Creating_Applied Visualization for EDA

Understanding_Correlation

Working_with Cramér's V
Modifying_Data Distributions

Chapter 14: Reducing Dimensionality
Understanding SVD

Performing_Factor Analysis and PCA

Understanding_ Some Applications

Chapter 15: Clustering
Clustering with K-means

Performing_Hierarchical Clustering

Discovering New Groups with DBScan

Chapter 16: Detecting Outliers in Data
Considering_Outlier Detection

Examining a Simple Univariate Method

Developing_a Multivariate Approach

Part 5: Learning from Data

Chapter 17: Exploring_Four Simple and Effective
Algorithms

Guessing_the Number: Linear Regression

.- Wondershare

Trial Version

PDFelement

Moving_to Logistic Regression

Making_Things as Simple as Naive Bayes

Learning_Lazily with Nearest Neighbors

Chapter 18: Performing_Cross-Validation, Selection,
and Optimization

Pondering_the Problem of Fitting_a Model

Cross-Validating

Selecting_ Variables Like a Pro

Chapter 19: Increasing Complexity with Linear and
Nonlinear Tricks

Using_Nonlinear Transformations

Regularizing_Linear Models
Fighting_with Big_Data Chunk by Chunk
Understanding_Support Vector Machines

Playing with Neural Networks

Chapter 20: Understanding the Power of the Many
Starting_with a Plain Decision Tree

Getting_Lost in a Random Forest

Boosting_Predictions
Part 6: The Part of Tens

Chapter 21: Ten Essential Data Resources
Discovering the News with Reddit

Getting_a Good Start with KDnuggets

Locating_Free Learning_Resources with Quora

Gaining_Insights with Oracle’s Al & Data Science Blog

Accessing_the Huge List of Resources on Data Science
Central

Discovering New Beginner Data Science Methodologies
at Data Science 101

.- Wondershare

Trial Version

PDFelement

Obtaining_ the Most Authoritative Sources at Udacity

Receiving_Help with Advanced Topics at Conductrics

Obtaining_the Facts of Open Source Data Science from
Springboard

Zeroing_In on Developer Resources with Jonathan Bower

Chapter 22: Ten Data Challenges You Should Take
Removing Personally Identifiable Information

Creating_a Secure Data Environment

Working_with a Multiple-Data-Source Problem

Honing_Your Overfit Strategies

Trudging_Through the Movielens Dataset

Locating the Correct Data Source

Working with Handwritten Information

Working_ with Pictures
Indentifying Data Lineage

Interacting_with a Huge Graph

Index
About the Authors
Connect with Dummies

End User License Agreement

List of Tables

Chapter 10
TABLE 10-1 Matplotlib Line Styles
TABLE 10-2 Matplotlib Colors
TABLE 10-3 Matplotlib Markers
Chapter 18
TABLE 18-1 Regression Evaluation Measures

TABLE 18-2 Classification Evaluation Measures

Wondershare

Trial Version Q% PDFelement

Chapter 19
TABLE 19-1 The SVM Module of Learning_Algorithms
TABLE 19-2 The Loss, Penalty, and Dual Constraints

List of Illustrations

Chapter 1

FIGURE 1-1: Loading data into variables so that you can
manipulate it.

FIGURE 1-2: Using_ the variable content to train a linear
regression model.

FIGURE 1-3: Outputting_a result as a response to the model.

Chapter 3

FIGURE 3-1: Tell the wizard how to install Anaconda on your
system.

FIGURE 3-2: Specify an installation location.

FIGURE 3-3: Configure the advanced installation options.
FIGURE 3-4: Create a folder to use to hold the book’s code.
FIGURE 3-5: Notebook uses cells to store your code.
FIGURE 3-6: The housing_object contains the loaded dataset.

Chapter 4

FIGURE 4-1: Create a new Python 3 Notebook using_the same
techniques as normal.

FIGURE 4-2: Use this dialog box to open existing_notebooks.

FIGURE 4-3: Colab maintains a history of the revisions for your
project.

FIGURE 4-4: Using_GitHub means storing_your data in a
repository.

FIGURE 4-5: Use gists to store individual files or other
resources.

FIGURE 4-6: Colab code cells contain a few extras not found in
Notebook.

.- Wondershare

Trial Version

PDFelement

FIGURE 4-7: Use the Editor tab of the Settings dialog_box to
modify ...

FIGURE 4-8: Colab code cells contain a few extras not found in
Notebook.

FIGURE 4-9: Use the GUI to make formatting_your text easier.

FIGURE 4-10: Hardware acceleration speeds code execution.

FIGURE 4-11: Use the table of contents to navigate your
notebook.

FIGURE 4-12: The notebook information includes both size and
settings.

FIGURE 4-13: Send a message or obtain a link to share your
notebook.

FIGURE 4-14: Use code snippets to write your applications
more quickly.

Chapter 5
FIGURE 5-1: Notebook makes adding_styles to your work easy.

FIGURE 5-2: Adding_headings makes separating_content in your
notebooks easy.

FIGURE 5-3: The Help menu contains a selection of common
help topics.

FIGURE 5-4: Take your time going_through the magic function
help, which has a |...

FIGURE 5-5: Embedding_images can dress up your notebook
presentation.

Chapter 6

FIGURE 6-1: The test image is 100 pixels high and 100 pixels
long.

FIGURE 6-2: The raw format of a CSV file is still text and quite
readable.

FIGURE 6-3: Use an application such as Excel to create a
formatted CSV presenta...

FIGURE 6-4: An Excel file is highly formatted and might contain
information of ...

.- Wondershare

Trial Version

PDFelement

FIGURE 6-5: The image appears onscreen after you render and
show it.

FIGURE 6-6: Cropping_the image makes it smaller.

FIGURE 6-7: XML is a hierarchical format that can become quite
complex.

Chapter 8
FIGURE 8-1: Plotting_the original graph.
FIGURE 8-2: Plotting_the graph addition.

Chapter 10
FIGURE 10-1: Creating_a basic plot that shows just one line.

FIGURE 10-2: Defining_a plot that contains multiple lines.

FIGURE 10-3: Specifying_how the axes should appear to the
viewer.

FIGURE 10-4: Adding_grids makes the values easier to read.

FIGURE 10-5: Line styles help differentiate between plots.

FIGURE 10-6: Markers help to emphasize individual values.

FIGURE 10-7: Use labels to identify the axes.

FIGURE 10-8: Annotation can identify points of interest.

FIGURE 10-9: Use legends to identify individual lines.
Chapter 11

FIGURE 11-1: Bar charts make it easier to perform
comparisons.

FIGURE 11-2: Histograms let you see distributions of numbers.

FIGURE 11-3: Use boxplots to present groups of numbers.

FIGURE 11-4: Use scatterplots to show groups of data points
and their associate...

FIGURE 11-5: Color arrays can make the scatterplot groups
stand out better.

FIGURE 11-6: Scatterplot trendlines can show you the general
data direction.

.- Wondershare

Trial Version

PDFelement

FIGURE 11-7: Use line graphs to show the flow of data over
time.

FIGURE 11-8: Add a trendline to show the average direction of
change in a chart...

FIGURE 11-9: Maps can illustrate data in ways other graphics
can't.

FIGURE 11-10: Undirected graphs connect nodes to form
patterns.

FIGURE 11-11: Use directed graphs to show direction between
nodes.

Chapter 12

FIGURE 12-1: The output from the memory test shows memory
usage for each line o...

Chapter 13

FIGURE 13-1: A contingency table based on groups and
binning.

FIGURE 13-2: A boxplot comparing_all the standardized
variables.

FIGURE 13-3: A boxplot of body mass arranged by penguin
groups.

FIGURE 13-4: Parallel coordinates anticipate whether groups
are easily separabl...

FIGURE 13-5: Flipper length distribution and density.
FIGURE 13-6: Histograms can detail better distributions.

FIGURE 13-7: A scatterplot reveals how two variables relate to
each other.

FIGURE 13-8: A matrix of scatterplots displays more information
at one time.

FIGURE 13-9: A covariance matrix of the Palmer Penguins
dataset.

FIGURE 13-10: A correlation matrix of the Palmer Penguins
dataset.

FIGURE 13-11: The distribution of bill depth transformed into a
uniform distrib...

.- Wondershare

Trial Version

PDFelement

FIGURE 13-12: The distribution of bill depth transformed into a
normal distribu...

Chapter 14

FIGURE 14-1: The resulting_projection of the handwritten data
by the t-SNE algo...

FIGURE 14-2: The example application would like to find similar
photos.

FIGURE 14-3: The output shows the results that resemble the
test image.

Chapter 15

FIGURE 15-1: Cross-tabulation of ground truth and K-means
clusters.

FIGURE 15-2: Rate of change of inertia for solutions up to k=20.

FIGURE 15-3: Cross-tabulation of ground truth and Ward
method’s agglomerative Cc...

FIGURE 15-4: A clustering_hierarchical tree obtained from
agglomerative cluster...

FIGURE 15-5: Cross-tabulation of ground truth and DBScan.

Chapter 16

FIGURE 16-1: Descriptive statistics for the Diabetes DataFrame
from Scikit-lear...

FIGURE 16-2: Boxplots.

FIGURE 16-3: The first two and last two components from the
PCA.

Chapter 18
FIGURE 18-1: Spatial distribution of house prices in California.

FIGURE 18-2: Boxplot of house prices, grouped by clusters.
FIGURE 18-3: Validation curves.

Chapter 19
FIGURE 19-1: A slow descent optimizing_squared error.
FIGURE 19-2: Dividing_two groups.

Wondershare

Trial Version g% PDFelement

FIGURE 19-3: A viable SVM solution for the problem of the two
groups and more.

FIGURE 19-4: The first ten handwritten digits from the digits
dataset.

FIGURE 19-5: The training_and test scores of the neural network
as it learns fr...

Chapter 20

FIGURE 20-1: A tree model of survival rates from the Titanic
disaster.

FIGURE 20-2: A tree model of the Mushroom dataset using_a
depth of five splits.

FIGURE 20-3: Verifying the impact of the number of estimators
on Random Forest.

| mm Wondershare
¥ PDFelement

o

\

Python for
Data Science

3rd Edition

by John Paul Mueller and Luca Massaron

dummies

Wondershare

Trial Version Q% PDFelement

Python® for Data Science For Dummies®, 3rd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2023 by John Wiley &
Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo,
Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and may
not be used without written permission. Python is a registered trademark
of Python Software Foundation Corporation. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE
THE PUBLISHER AND AUTHORS HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS WORK, THEY MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED

Wondershare

Trial Version % PDFelement

OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR
THIS WORK. THE FACT THAT AN ORGANIZATION, WEBSITE,
OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE
ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT
WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. NEITHER THE PUBLISHER NOR AUTHORS SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER
DAMAGES.

For general information on our other products and services, please
contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical
support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-
on-demand. Some material included with standard print versions of this
book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley

products, visit www.wiley.com.

Wondershare

Trial Version g% PDFelement

Library of Congress Control Number: 2023946155

ISBN 978-1-394-21314-6 (pbk); ISBN 978-1-394-21308-5 (ebk); ISBN
ePDF 978-1-394-21309-2 (ebk)

Trial Version

.- Wondershare

PDFelement

Introduction

0000000000000 00

The growth of the internet has been phenomenal. According to Internet
World Stats
(https://www.internetworldstats.com/emarketing.htm), 69 percent
of the world is now connected in some way to the internet, including
developing countries. North America has the highest penetration rate
93.4 percent, which means you now have access to nearly everyone just
by knowing how to manipulate data. Data science turns this huge
amount of data into capabilities that you use absolutely every day to
perform an amazing array of tasks or to obtain services from someone
else.

You’ve probably used data science in ways that you never expected. For
example, when you used your favorite search engine this morning to
look for something, it made suggestions on alternative search terms.
Those terms are supplied by data science. When you went to the doctor
last week and discovered that the lump you found wasn’t cancer, the
doctor likely made the prognosis with the help of data science.

In fact, you may work with data science every day and not even know it.
Even though many of the purposes of data science elude attention, you
have probably become more aware of the data you generate, and with
that awareness comes a desire for control over aspects of your life, such
as when and where to shop, or whether to have someone perform the
task for you. In addition to all its other uses, data science enables you to
add that level of control that you, like many people, are looking for
today.

Python for Data Science For Dummies, 3rd Edition not only gets you
started using data science to perform a wealth of practical tasks but also
helps you realize just how many places data science is used. By knowing
how to answer data science problems and where to employ data science,
you gain a significant advantage over everyone else, increasing your
chances at promotion or that new job you really want.

Wondershare

Trial Version Q% PDFelement

About This Book

The main purpose of Python for Data Science For Dummies, 3rd
Edition, is to take the scare factor out of data science by showing you
that data science is not only really interesting but also quite doable using
Python. You may assume that you need to be a computer science genius
to perform the complex tasks normally associated with data science, but
that’s far from the truth. Python comes with a host of useful libraries that
do all the heavy lifting for you in the background. You don’t even realize
how much is going on, and you don’t need to care. All you really need to
know is that you want to perform specific tasks, and Python makes these
tasks quite accessible.

Part of the emphasis of this book is on using the right tools. You start
with either Jupyter Notebook (on desktop systems) or Google Colab (on
the web) — two tools that take the sting out of working with Python.
The code you place in Jupyter Notebook or Google Colab is presentation
quality, and you can mix a number of presentation elements right there
in your document. It’s not really like using a traditional development
environment at all.

You also discover some interesting techniques in this book. For example,
you can create plots of all your data science experiments using
Matplotlib, and this book gives you all the details for doing that. This
book also spends considerable time showing you available resources
(such as packages) and how you can use Scikit-learn to perform some
very interesting calculations. Many people would like to know how to
perform handwriting recognition, and if you’re one of them, you can use
this book to get a leg up on the process.

Of course, you may still be worried about the whole programming
environment issue, and this book doesn’t leave you in the dark there,
either. At the beginning, you find complete methods you need to get
started with data science using Jupyter Notebook or Google Colab. The
emphasis is on getting you up and running as quickly as possible, and to
make examples straightforward and simple so that the code doesn’t
become a stumbling block to learning.

.- Wondershare

Trial Version

PDFelement

This third edition of the book provides you with updated examples using
Python 3.x so that you’re using the most modern version of Python while
reading. In addition, you find a stronger emphasis on making examples
simpler, but also making the environment more inclusive by adding
material on deep learning. More important, this edition of the book
contains updated datasets that better demonstrate how data science
works today. This edition of the book also touches on modern concerns,
such as removing personally identifiable information and enhancing data
security. Consequently, you get a lot more out of this edition of the book
as a result of the input provided by thousands of readers before you.

To make absorbing the concepts even easier, this book uses the
following conventions:

» Text that you’re meant to type just as it appears in the book is in
bold. The exception is when you’re working through a list of steps:
Because each step is bold, the text to type is not bold.

» When you see words in italics as part of a typing sequence, you need
to replace that value with something that works for you. For
example, if you see “Type Your Name and press Enter,” you need to
replace Your Name with your actual name.

» Web addresses and programming code appear in monofont. If you're
reading a digital version of this book on a device connected to the
internet, note that you can click the web address to visit that website,
like this: http://www.dummies.com.

» When you need to type command sequences, you see them separated
by a special arrow, like this: File = New File. In this example, you
go to the File menu first and then select the New File entry on that
menu.

Foolish Assumptions

You may find it difficult to believe that we've assumed anything about
you — after all, we haven’t even met you yet! Although most

.- Wondershare

Trial Version

PDFelement

assumptions are indeed foolish, we made these assumptions to provide a
starting point for the book.

You need to be familiar with the platform you want to use because the
book doesn’t offer any guidance in this regard. (Chapter 3 does,
however, provide Anaconda installation instructions, which supports
Jupyter Notebook, and Chapter 4 gets you started with Google Colab.)
To provide you with maximum information about Python concerning
how it applies to data science, this book doesn’t discuss any platform-
specific issues. You really do need to know how to install applications,
use applications, and generally work with your chosen platform before
you begin working with this book.

You must know how to work with Python. This edition of the book no
longer contains a Python primer because you can find a wealth of
tutorials online (see https://www.w3schools.com/python/ and

https://www.tutorialspoint.com/python/ as examples).

This book isn’t a math primer. Yes, you do encounter some complex
math, but the emphasis is on helping you use Python and data science to
perform analysis tasks rather than teaching math theory. Chapters 1 and
2 give you a better understanding of precisely what you need to know to
use this book successfully.

This book also assumes that you can access items on the internet.
Sprinkled throughout are numerous references to online material that
will enhance your learning experience. However, these added sources
are useful only if you actually find and use them.

Icons Used in This Book

As you read this book, you come across icons in the margins, and here’s
what those icons mean:

Trial Version

.- Wondershare

PDFelement

©

ne Tips are nice because they help you save time or perform some
task without a lot of extra work. The tips in this book are time-
saving techniques or pointers to resources that you should try in
order to get the maximum benefit from Python or in performing
data science—related tasks.

®

warnine We don’t want to sound like angry parents or some kind of
maniacs, but you should avoid doing anything that’s marked with a
Warning icon. Otherwise, you may find that your application fails
to work as expected, or you get incorrect answers from seemingly
bulletproof equations, or (in the worst-case scenario) you lose data.

&
TECHMNICAL
sture - Whenever you see this icon, think advanced tip or technique.
You may find that you don’t need these tidbits of useful
information, or they could contain the solution you need to get a

program running. Skip these bits of information whenever you like.

@

rememeer 1f you don’t get anything else out of a particular chapter or
section, remember the material marked by this icon. This text
usually contains an essential process or a morsel of information that
you must know to work with Python or to perform data science—
related tasks successfully.

Beyond the Book

This book isn’t the end of your Python or data science experience — it’s
really just the beginning. We provide online content to make this book

.- Wondershare

Trial Version

PDFelement

more flexible and better able to meet your needs. That way, as we
receive email from you, we can address questions and tell you how
updates to either Python or its associated add-ons affect book content. In
fact, you gain access to all these cool additions:

» Cheat sheet: You remember using crib notes in school to make a
better mark on a test, don’t you? You do? Well, a cheat sheet is sort
of like that. It provides you with some special notes about tasks that
you can do with Python, IPython, IPython Notebook, and data
science that not every other person knows. You can find the cheat
sheet by going to www.dummies.com and entering Python for Data
Science For Dummies, 3rd Edition in the search field. The cheat
sheet contains neat information such as the most common
programming mistakes, styles for creating plot lines, and common
magic functions to use in Jupyter Notebook.

» Updates: Sometimes changes happen. For example, we may not
have seen an upcoming change when we looked into our crystal ball
during the writing of this book. In the past, this possibility simply
meant that the book became outdated and less useful, but you can
now find updates to the book by searching this book's title at
www.dummies.com.

In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book-related
techniques at http://blog.johnmuellerbooks.com/.

» Companion files: Hey! Who really wants to type all the code in the
book and reconstruct all those plots manually? Most readers would
prefer to spend their time actually working with Python, performing
data science tasks, and seeing the interesting things they can do,
rather than typing. Fortunately for you, the examples used in the
book are available for download, so all you need to do is read the
book to learn Python for Data Science For Dummies usage
techniques. You can find these files at
www . dummies.com/go/pythonfordatasciencefd3e. You can also

.- Wondershare

Trial Version

PDFelement

find the source code on author John’s website at
http://www.johnmuellerbooks.com/source-code/.

Where to Go from Here

It’s time to start your Python for Data Science For Dummies adventure!
If you’re completely new to Python and its use for data science tasks,
you should start with Chapter 1 and progress through the book at a pace
that allows you to absorb as much of the material as possible.

If you’re a novice who’s in an absolute rush to use Python with data
science as quickly as possible, you can skip to Chapter 3 (desktop users)
or Chapter 4 (web browser users) with the understanding that you may
find some topics a bit confusing later. More advanced readers can skip to
Chapter 5 to gain an understanding of the tools used in this book.

Readers who have some exposure to Python and know how to use their
development environment can save reading time by moving directly to
Chapter 6. You can always go back to earlier chapters as necessary when
you have questions. However, you should understand how each
technique works before moving to the next one. Every technique, coding
example, and procedure has important lessons for you, and you could
miss vital content if you start skipping too much information.

Wondershare

Trial Version g PDFelement

Partl

Getting Started with Data Science and
Python

Wondershare

Trial Version l- PDFelement

IN THIS PART ...

Understanding the connection between Python and data science
Getting an overview of Python capabilities
Defining a Python setup for data science

Using Google Colab for data science tasks

Wondershare

Trial Version Q% PDFelement

Chapter 1

Discovering the Match between Data
Science and Python

IN THIS CHAPTER

» Discovering the wonders of data science

» Exploring how data science works
» Creating the connection between Python and data science

» Getting started with Python

Data science may seem like one of those technologies that you’d never
use, but you’d be wrong. Yes, data science involves the use of advanced
math techniques, statistics, and big data. However, data science also
involves helping you make smart decisions, creating suggestions for
options based on previous choices, and making robots see objects. In
fact, people use data science in so many different ways that you almost
can’t look anywhere or do anything without feeling the effects of data
science on your life. In short, data science is the person behind the
partition in the experience of the wonderment of technology. Without
data science, much of what you accept as typical and expected today
wouldn’t even be possible. This is the reason that being a data scientist is
one of the most interesting jobs of the 21st century.

rememser 10 Make data science doable by someone who’s less than a math
genius, you need tools. You could use any of a number of tools to
perform data science tasks, but Python is uniquely suited to making
it easier to work with data science. For one thing, Python provides
an incredible number of math-related libraries that help you
perform tasks with a less-than-perfect understanding of precisely
what is going on. However, Python goes further by supporting

Wondershare

Trial Version Q% PDFelement

multiple coding styles (programming paradigms) and doing other
things to make your job easier. Therefore, yes, you could use other
languages to write data science applications, but Python reduces
your workload, so it’s a natural choice for those who really don’t
want to work hard, but rather to work smart.

This chapter gets you started with Python. Even though this book isn’t
designed to provide you with a complete Python tutorial, exploring some
basic Python issues will reduce the time needed for you to get up to
speed. (If you do need a good starting tutorial, please get Beginning
Programming with Python For Dummies, 3rd Edition, by John Mueller
(Wiley)). You’ll find that the book provides pointers to tutorials and
other aids as needed to fill in any gaps that you may have in your Python
education.

Understanding Python as a Language

This book uses Python as a programming language because it’s
especially well-suited to data science needs and also supports
performing general programming tasks. Common wisdom says that
Python is interpreted, but as described in the blog post at
http://blog.johnmuellerbooks.com/2023/04/10/compiling-
python/, Python can act as a compiled language as well. This book uses
Jupyter Notebook because the environment works well for learning, but
you need to know that Python provides a lot more than you see in this
book. With this fact in mind, the following sections provide a brief view
of Python as a language.

Viewing Python’s various uses as a general-purpose
language

Python isn’t a language just for use in data science; it’s a general-
purpose language with many uses beyond what you need to perform data
science tasks. Python is important because after you have built a model,
you may need to build a user interface and other structural elements
around it. The model may simply be one part of a much larger
application, all of which you can build using Python. Here are some

Wondershare

Trial Version Q% PDFelement

tasks that developers commonly use Python to perform beyond data
science needs:

» Web development
» General-purpose programming;:

e Performing Create, Read, Update, and Delete (CRUD)
operations on any sort of file

e Creating graphical user interfaces (GUISs)
e Developing application programming interfaces (API)s

» Game development (something you can read about at
https://realpython.com/tutorials/gamedev/)

» Automation and scripting
» Software testing and prototyping

» Language development (Cobra, CoffeeScript, and Go all use a
language syntax similar to Python)

» Marketing and Search Engine Optimization (SEO)

» Common tasks associated with standard applications:
e Tracking financial transactions of all sorts
 Interacting with various types of messaging strategies

e Creating various kinds of lists based on environmental or
other inputs

e Automating tasks like filling out forms

The list could be much longer, but this gives you an idea of just how
capable Python actually is. The view you see of Python in this book is
limited to experimenting with and learning about data science, but don’t
let this view limit what you actually use Python to do in the future.
Python is currently used as a general-purpose programming language in
companies like the following:

Amazon Dropbox Facebook

.- Wondershare

Trial Version

PDFelement

Google IBM Instagram
Intel JP Morgan Chase NASA
Netflix PayPal Pinterest
Reddit Spotify Stripe

Uber YouTube

Interpreting Python

You see Python used in this book in an interpreted mode. There are a lot
of reasons to take this approach, but the essential reason is that it allows
the use of literate programming techniques
(https://notebook.community/sfomel/ipython/LiterateProgrammin
g), which greatly enhance learning and significantly reduce the learning
curve. The main advantages of using Python in an interpreted mode are
that you receive instant feedback, and fixing errors is significantly easier.
When combined with a notebook environment, using Python in an
interpreted mode also makes it easier to create presentations and reports,
as well as to create graphics that present outcomes of various analyses.

Compiling Python

Outside this book, you may find that compiling your Python application
is important because doing so can help increase overall application
speed. In addition, compiling your code can reduce the potential for
others stealing your code and make your applications both more secure
and reliable. You do need access to third-party products to compile your
code, but you’ll find plenty of available products discussed at
https://www.softwaretestinghelp.com/python-compiler/.

Defining Data Science

At one point, the world viewed anyone working with statistics as a sort
of accountant or perhaps a mad scientist. Many people consider statistics
and analysis of data boring. However, data science is one of those
occupations in which the more you learn, the more you want to learn.
Answering one question often spawns more questions that are even more
interesting than the one you just answered. However, the thing that

.- Wondershare

Trial Version

PDFelement

makes data science so interesting is that you see it everywhere and used
in an almost infinite number of ways. The following sections provide
more details on why data science is such an amazing field of study.

Considering the emergence of data science

Data science is a relatively new term. William S. Cleveland coined the
term in 2001 as part of a paper entitled “Data Science: An Action Plan
for Expanding the Technical Areas of the Field of Statistics.” It wasn’t
until a year later that the International Council for Science actually
recognized data science and created a committee for it. Columbia
University got into the act in 2003 by beginning publication of the
Journal of Data Science.

rememeer However, the mathematical basis behind data science is
centuries old because data science is essentially a method of
viewing and analyzing statistics and probability. The first essential
use of statistics as a term comes in 1749, but statistics are certainly
much older than that. People have used statistics to recognize
patterns for thousands of years. For example, the historian
Thucydides (in his History of the Peloponnesian War) describes
how the Athenians calculated the height of the wall of Plataea in
fifth century BC by counting bricks in an unplastered section of the
wall. Because the count needed to be accurate, the Athenians took
the average of the count by several solders.

The process of quantifying and understanding statistics is relatively new,
but the science itself is quite old. An early attempt to begin documenting
the importance of statistics appears in the ninth century when Al-Kindi
wrote Manuscript on Deciphering Cryptographic Messages. In this
paper, Al-Kindi describes how to use a combination of statistics and
frequency analysis to decipher encrypted messages. Even in the
beginning, statistics saw use in practical application of science to tasks
that seemed virtually impossible to complete. Data science continues this
process, and to some people it may actually seem like magic.

.- Wondershare

Trial Version

PDFelement

Outlining the core competencies of a data scientist

As is true of anyone performing most complex trades today, the data
scientist requires knowledge of a broad range of skills to perform the
required tasks. In fact, so many different skills are required that data
scientists often work in teams. Someone who is good at gathering data
may team up with an analyst and someone gifted in presenting
information. It would be hard to find a single person with all the required
skills. With this in mind, the following list describes areas in which a
data scientist could excel (with more competencies being better):

» Data capture: It doesn’t matter what sort of math skills you have if
you can’t obtain data to analyze in the first place. The act of
capturing data begins by managing a data source using database
management skills. However, raw data isn’t particularly useful in
many situations — you must also understand the data domain so that
you can look at the data and begin formulating the sorts of questions
to ask. Finally, you must have data-modeling skills so that you
understand how the data is connected and whether the data is
structured.

» Analysis: After you have data to work with and understand the
complexities of that data, you can begin to perform an analysis on it.
You perform some analysis using basic statistical tool skills, much
like those that just about everyone learns in college. However, the
use of specialized math tricks and algorithms can make patterns in
the data more obvious or help you draw conclusions that you can’t
draw by reviewing the data alone.

» Presentation: Most people don’t understand numbers well. They
can’t see the patterns that the data scientist sees. It’s important to
provide a graphical presentation of these patterns to help others
visualize what the numbers mean and how to apply them in a
meaningful way. More important, the presentation must tell a
specific story so that the impact of the data isn’t lost.

Linking data science, big data, and AI

Trial Version

.- Wondershare

PDFelement

Interestingly enough, the act of moving data around so that someone can
perform analysis on it is a specialty called Extract, Transformation, and
Loading (ETL). The ETL specialist uses programming languages such as
Python to extract the data from a number of sources. Corporations tend
not to keep data in one easily accessed location, so finding the data
required to perform analysis takes time. After the ETL specialist finds
the data, a programming language or other tool transforms it into a
common format for analysis purposes. The loading process takes many
forms, but this book relies on Python to perform the task. In a large, real-
world operation, you may find yourself using tools such as Informatica,
MS SSIS, or Teradata to perform the task.

rememeer Data science isn’t necessarily a means to an end; it may instead
be a step along the way. As a data scientist works through various
datasets and finds interesting facts, these facts may act as input for
other sorts of analysis and Al applications. For example, consider
that your shopping habits often suggest what books you may like or
where you may like to go for a vacation. Shopping or other habits
can also help others understand other, sometimes less benign,
activities as well. Machine Learning For Dummies, 2nd Edition and
Artificial Intelligence For Dummies, 2nd Edition, both by John
Mueller and Luca Massaron (Wiley) help you understand these
other uses of data science. For now, consider the fact that what you
learn in this book can have a definite effect on a career path that
will go many other places.

EXTRACT, LOAD, AND TRANSFORM (ELT)

You may come across a new way of working with data called ELT, which is
a variation of ETL. The article “Extract, Load, Transform (ELT)”
(https://www.techtarget.com/searchdatamanagement/definition/Extract-
Load-Transform-ELT), describes the difference between the two. This
different approach is often used for nonrelational and unstructured data.
The overall goal is to simplify the data gathering and management process,

.- Wondershare

Trial Version

PDFelement

possibly allowing the use of a single tool even for large datasets. However,
this approach also has significant drawbacks. The ELT approach isn’t
covered in this book, but it does pay to know that it exists.

Creating the Data Science Pipeline

Data science is partly art and partly engineering. Recognizing patterns in
data, considering what questions to ask, and determining which
algorithms work best are all part of the art side of data science. However,
to make the art part of data science realizable, the engineering part relies
on a specific process to achieve specific goals. This process is the data
science pipeline, which requires the data scientist to follow particular
steps in the preparation, analysis, and presentation of the data. The
following list helps you understand the data science pipeline better so
that you can understand how the book employs it during the presentation
of examples:

» Preparing the data: The data that you access from various sources
doesn’t come in an easily packaged form, ready for analysis. The raw
data not only may vary substantially in format but also need you to
transform it to make all the data sources cohesive and amenable to
analysis.

» Performing exploratory data analysis: The math behind data
analysis relies on engineering principles in that the results are
provable and consistent. However, data science provides access to a
wealth of statistical methods and algorithms that help you discover
patterns in the data. A single approach doesn’t ordinarily do the trick.
You typically use an iterative process to rework the data from a
number of perspectives. The use of trial and error is part of the data
science art.

» Learning from data: As you iterate through various statistical
analysis methods and apply algorithms to detect patterns, you begin
learning from the data. The data may not tell the story that you
originally thought it would, or it may have many stories to tell.
Discovery is part of being a data scientist. If you have preconceived

Wondershare

Trial Version Q% PDFelement

ideas of what the data contains, you won’t find the information it
actually does contain.

» Visualizing: Visualization means seeing the patterns in the data and
then being able to react to those patterns. It also means being able to
see when data is not part of the pattern. Think of yourself as a data
sculptor, removing the data that lies outside the patterns (the outliers)
so that others can see the masterpiece of information beneath.

» Obtaining insights and data products: The data scientist may seem
to simply be looking for unique methods of viewing data. However,
the process doesn’t end until you have a clear understanding of what
the data means. The insights you obtain from manipulating and
analyzing the data help you to perform real-world tasks. For
example, you can use the results of an analysis to make a business
decision.

Understanding Python’s Role in Data Science

Given the right data sources, analysis requirements, and presentation
needs, you can use Python for every part of the data science pipeline. In
fact, that’s precisely what you do in this book. Every example uses
Python to help you understand another part of the data science equation.
Of all the languages you could choose for performing data science tasks,
Python is the most flexible and capable because it supports so many
third-party libraries devoted to the task. The following sections help you
better understand why Python is such a good choice for many (if not
most) data science needs.

Considering the shifting profile of data scientists

Some people view the data scientist as an unapproachable nerd who
performs miracles on data with math. The data scientist is the person
behind the curtain in an Oz-like experience. However, this perspective is
changing. In many respects, the world now views the data scientist as
either an adjunct to a developer or as a new type of developer. The
ascendance of applications of all sorts that can learn is the essence of
this change. For an application to learn, it has to be able to manipulate

Trial Version

.- Wondershare

PDFelement

large databases and discover new patterns in them. In addition, the
application must be able to create new data based on the old data —
making an informed prediction of sorts. The new kinds of applications
affect people in ways that would have seemed like science fiction just a
few years ago. Of course, the most noticeable of these applications
define the behaviors of robots that will interact far more closely with
people tomorrow than they do today.

From a business perspective, the necessity of fusing data science and
application development is obvious: Businesses must perform various
sorts of analysis on the huge databases it has collected — to make sense
of the information and use it to predict the future. In truth, however, the
far greater impact of the melding of these two branches of science —
data science and application development — will be felt in terms of
creating altogether new kinds of applications, some of which aren’t even
possibly to imagine with clarity today. For example, new applications
could help students learn with greater precision by analyzing their
learning trends and creating new instructional methods that work for that
particular student. This combination of sciences may also solve a host of
medical problems that seem impossible to solve today — not only in
keeping disease at bay, but also by solving problems, such as how to
create truly usable prosthetic devices that look and act like the real thing.

Working with a multipurpose, simple, and efficient
language

Many different ways are available for accomplishing data science tasks.
This book covers only one of the myriad methods at your disposal.
However, Python represents one of the few single-stop solutions that you
can use to solve complex data science problems. Instead of having to use
a number of tools to perform a task, you can simply use a single
language, Python, to get the job done. The Python difference is the large
number scientific and math libraries created for it by third parties.
Plugging in these libraries greatly extends Python and allows it to easily
perform tasks that other languages could perform, but with great
difficulty.

Wondershare

Trial Version Q% PDFelement

ne Python’s libraries are its main selling point; however, Python
offers more than reusable code. The most important thing to
consider with Python is that it supports four different coding styles:

» Functional: Treats every statement as a mathematical equation and
avoids any form of state or mutable data. The main advantage of this
approach is having no side effects to consider. In addition, this
coding style lends itself better than the others to parallel processing
because there is no state to consider. Many developers prefer this
coding style for recursion and for lambda calculus.

» Imperative: Performs computations as a direct change to program
state. This style is especially useful when manipulating data
structures and produces elegant, but simple, code.

» Object-oriented: Relies on data fields that are treated as objects and
manipulated only through prescribed methods. Python doesn’t fully
support this coding form because it can’t implement features such as
data hiding. However, this is a useful coding style for complex
applications because it supports encapsulation and polymorphism.
This coding style also favors code reuse.

» Procedural: Treats tasks as step-by-step iterations where common
tasks are placed in functions that are called as needed. This coding
style favors iteration, sequencing, selection, and modularization.

Learning to Use Python Fast

It’s time to try using Python to see the data science pipeline in action.
The following sections provide a brief overview of the process you
explore in detail in the rest of the book. You won’t actually perform the
tasks in the following sections. In fact, you don’t install Python until
Chapter 3, so for now, just follow along in the text. This book uses a
specific version of Python and an IDE called Jupyter Notebook, so
please wait until Chapter 3 to install these features (or skip ahead, if you
insist, and install them now). (You can also use Google Colab with the

Wondershare

Trial Version Q% PDFelement

source code in the book, as described in Chapter 4.) Don’t worry about
understanding every aspect of the process at this point. The purpose of
these sections is to help you gain an understanding of the flow of using
Python to perform data science tasks. Many of the details may seem
difficult to understand at this point, but the rest of the book will help you
understand them.

rememser 1 he examples in this book rely on a web-based application
named Jupyter Notebook. The screenshots you see in this and other
chapters reflect how Jupyter Notebook looks in Chrome on a
Windows 10/11 system. The view you see will contain the same
data, but the actual interface may differ a little depending on
platform (such as using a notebook instead of a desktop system),
operating system, and browser. Don’t worry if you see some slight
differences between your display and the screenshots in the book.

ne You don’t have to type the source code for this chapter in by
hand. In fact, it’s a lot easier if you use the downloadable source
(see the Introduction for details on downloading the source code).
The source code for this chapter appears in the
P4DS4D3_01_Quick_Overview.ipynb source code file.

Loading data

Before you can do anything, you need to load some data. The book
shows you all sorts of methods for performing this task. In this case,
Figure 1-1 shows how to load a dataset called California Housing that
contains housing prices and other facts about houses in California. It was
obtained from StatLib repository (see
https://www.dcc.fc.up.pt/~1ltorgo/Regression/cal housing.html
for details). The code places the entire dataset in the housing variable
and then places parts of that data in variables named x and y. Think of
variables as you would storage boxes. The variables are important

Wondershare

Trial Version Q% PDFelement

because they make it possible to work with the data. The output shows
that the dataset contains 20,640 entries with eight features each. The
second output shows the name of each of the features.

Training a model

Now that you have some data to work with, you can do something with
it. All sorts of algorithms are built into Python. Figure 1-2 shows a linear
regression model. Again, don't worry precisely how this works; later
chapters discuss linear regression in detail. The important thing to note
in Figure 1-2 is that Python lets you perform the linear regression using
just two statements and to place the result in a variable named
hypothesis.

Learning to Use Python Fast

Loading data

In [1]: from sklearn.datasets impeort fetch_california_housing
housing = fetch_california_housing()
X, v = housing.data,housing.target
print("The size of the data set is {}".format(X.shape))
print{“The names of the data columns are {}~, housing.feature_names)
The size of the data set is (Zecde, 3§)

The names of the data columns are {} ['MedInc’, ‘Housedge', “AveRooms®', ‘AveBed
rms ", “Population”, “AveQOccup’', "Latitude’, "Longitude’]

FIGURE 1-1: Loading data into variables so that you can manipulate it.

Training a model

In [2]: from sklearn.linear_model impert LinearRegression
hypothesis = LinearRegression()
hypothesis . fit{X,v)

Out[2]: LinearRegression()

FIGURE 1-2: Using the variable content to train a linear regression model.

Viewing a result

Performing any sort of analysis doesn’t pay unless you obtain some
benefit from it in the form of a result. This book shows all sorts of ways
to view output, but Figure 1-3 starts with something simple. In this case,

Wondershare

Trial Version Q% PDFelement

you see the coefficient output from the linear regression analysis. Notice
that there is one coefficient for each of the dataset features.

Viewing a result

In [3]: print(hypothesis.coef_)

[4.36693293e-81 9.43577803e-93 -1.87322041e-81 6£.450656%94e-01
-3,97638942e-86 -3.78654265e-83 -4,21314378e-81 -4.34513755e-01]

FIGURE 1-3: Outputting a result as a response to the model.

ne One of the reasons that this book uses Jupyter Notebook is that
the product helps you to create nicely formatted output as part of
creating the application. Look again at Figure 1-3, and you see a
report that you could simply print and offer to a colleague. The
output isn’t suitable for many people, but those experienced with
Python and data science will find it quite usable and informative.

Wondershare

Trial Version Q% PDFelement

Chapter 2

Introducing Python’s Capabilities and
Wonders

IN THIS CHAPTER
» Getting a quick start with Python

» Considering Python’s special features

» Defining and exploring the power of Python for the data
scientist

All computers run on just one kind of language — machine code.
However, unless you want to learn how to talk like a computer in Os and
1s, machine code isn’t particularly useful. You’d never want to try to
define data science problems using machine code. It would take an entire
lifetime (if not longer) just to define one problem. Higher-level
languages make it possible to write a lot of code that humans can
understand quite quickly. The tools used with these languages make it
possible to translate the human-readable code into machine code that the
machine understands. Therefore, the choice of languages depends on the
human need, not the machine need. With this in mind, this chapter
introduces you to the capabilities that Python provides that make it a
practical choice for the data scientist. After all, you want to know why
this book uses Python and not another language, such as Java or C++.
These other languages are perfectly good choices for some tasks, but
they’re not as suited to meet data science needs.

The chapter begins with some simple Python examples to give you a
taste for the language. As part of exploring Python in this chapter, you
discover all sorts of interesting features that Python provides. Python
gives you access to a host of libraries that are especially suited to meet
the needs of the data scientist. In fact, you use a number of these
libraries throughout the book as you work through the coding examples.

Wondershare

Trial Version Q% PDFelement

Knowing about these libraries in advance will help you understand the
programming examples and why the book shows how to perform tasks
in a certain way.

rememeer Even though this chapter shows examples of working with
Python, you don’t really begin using Python in earnest until Chapter
6. This chapter offers an overview so that you can better understand
what Python can do. Chapter 3 shows how to install the particular
version of Python used for this book. Chapters 4 and 5 are about
tools you can use, with Chapter 4 emphasizing Google Colab, an
alternative environment for coding. In short, if you don’t quite
understand an example in this chapter, don’t worry: You get plenty
of additional information in later chapters.

Working with Python

This book doesn’t provide you with a full Python tutorial. (However,
you can get a great start with Beginning Programming with Python For
Dummies, 3rd Edition, by John Paul Mueller (Wiley)). For now, it’s
helpful to get a brief overview of what Python looks like and how you
interact with it, as in the following sections.

ne You don’t have to type the source code for this chapter
manually; using the downloadable source a lot easier (see the
Introduction for details on downloading the source code). The
source code for this chapter appears in the
P4DS4D3_02_Using_Python. ipynb file.

Contributing to data science

Because this is a book about data science, you're probably wondering
how Python contributes to better data science and what the word better
actually means in this case. Knowing that a lot of organizations use

.- Wondershare

Trial Version

PDFelement

Python doesn't help you because it doesn’t really say much about how
they use Python, and if you want to match your choice of language to
your particular need, understanding how other organizations use Python
becomes important.

One such example appears at
https://www.datasciencegraduateprograms.com/python/. In this
case, the article talks about Forecastwatch.com
(https://forecastwatch.com/), which actually does watch the weather
and try to make predictions better. Every day, Forecastwatch.com
compares 36,000 forecasts with the weather that people actually
experience and then uses the results to create better forecasts. Trying to
aggregate and make sense of the weather data for 800 U.S. cities is
daunting, so Forecastwatch.com needed a language that could do these

tasks with the least amount of fuss. Here are the reasons Forecast.com
chose Python:

» Library support: Python provides support for a large number of
libraries, more than any one organization will ever need. According
to https://www.python.org/about/success/forecastwatch/,
Forecastwatch.com found the regular expression, thread, object
serialization, and gzip data compression libraries especially useful.

» Parallel processing: Each of the forecasts is processed as a separate
thread so that the system can work through them quickly. The thread
data includes the web page URL that contains the required forecast,
along with category information, such as city name.

» Data access: This huge amount of data can’t all exist in memory, so
Forecast.comrelies on a MySQL database accessed through the
MySQLdb (https://sourceforge.net/projects/mysqgl-python/)
library, which is one of the few libraries that hasn’t moved on to
Python 3.x yet. However, the associated website promises the
required support soon. In the meantime, if you need to use MySQL
with Python 3.x, then using mysqlclient
(https://pypi.org/project/mysqlclient/) will be a good
replacement because it adds Python 3.x support to MySQLdb.

.- Wondershare

Trial Version

PDFelement

» Data display: Originally, the PHP scripting language produced the
Forecastwatch.com output. However, by using Quixote

(https://www.mems-exchange.org/software/quixote/), which is a
display framework, Forecastwatch.com was able to move

everything to Python. (An update of this framework is DurusWorks,
at https://www.mems-exchange.org/software/DurusWorks/.)

Getting a taste of the language

Python is designed to provide clear language statements but to do so in
an incredibly small space. A single line of Python code may perform
tasks that another language usually takes several lines to perform. For
example, if you want to display something on-screen, you simply tell
Python to print it, like this:

print("Hello There!")

The point is that you can simply tell Python to output text, an object, or
anything else using a simple statement. You don't really need too much
in the way of advanced programming skills. When you want to end your
session using a command line environment such as IDLE, you simply
type quit () and press Enter. This book relies on a much better
environment, Jupyter Notebook (or Google Colab as an alternative),
which really does make your code look as though it came from
someone's notebook.

Understanding the need for indentation

Python relies on indentation to create various language features, such as
conditional statements. One of the most common errors that developers
encounter is not providing the proper indentation for code. You see this
principle in action later in the book, but for now, always be sure to pay
attention to indentation as you work through the book examples. For
example, here is an if statement (a conditional that says that if
something meets the condition, perform the code that follows) with
proper indentation.

if 1 < 2:
print("1 is less than 2")

Wondershare

Trial Version Q% PDFelement

warning The print statement must appear indented below the conditional

statement. Otherwise, the condition won't work as expected, and
you may see an error message, too.

Working with Jupyter Notebook and Google Colab

The vast majority of this book relies on Jupyter Notebook (with code
also tested using Google Colab), which is part of the Anaconda
installation you create in Chapter 3. Jupyter Notebook is used in Chapter
1 and again later in the book. The presentation for Google Colab is
similar to, but not precisely the same as, Jupyter Notebook, and you see
Google Colab in detail in Chapter 4. The purpose behind using an
Integrated Development Environment (IDE) such as Jupyter Notebook
and Google Colab is that they help you create correct code and perform
some tasks, such as indentation, automatically. An IDE can also give
your code a nicer appearance and give you a means for making report-
like output with graphics and other noncode features.

Performing Rapid Prototyping and
EXxperimentation

Python is all about creating applications quickly and then experimenting
with them to see how things work. The act of creating an application
design in code without necessarily filling in all the details is prototyping.
Python uses less code than other languages to perform tasks, so
prototyping goes faster. The fact that many of the actions you need to
perform are already defined as part of libraries that you load into
memory makes things go faster still.

Data science doesn't rely on static solutions. You may have to try
multiple solutions to find the particular solution that works best. This is
where experimentation comes into play. After you create a prototype,
you use it to experiment with various algorithms to determine which
algorithm works best in a particular situation. The algorithm you use

.- Wondershare

Trial Version

PDFelement

varies depending on the answers you see and the data you use, so there
are too many variables to consider for any sort of canned solution.

‘&5&‘

"sture - The prototyping and experimentation process occurs in several
phases. As you go through the book, you discover that these phases
have distinct uses and appear in a particular order. The following
list shows the phases in the order in which you normally perform
them.

1. Building a data pipeline. To work with the data, you must create a
pipeline to it. It’s possible to load some data into memory. However,
after the dataset gets to a certain size, you need to start working with
it on disk or by using other means to interact with it. The technique
you use for gaining access to the data is important because it impacts
how fast you get a result.

2. Performing the required shaping. The shape of the data — the way
in which it appears and its characteristics (such as data type), is
important in performing analysis. To perform an apples-to-apples
comparison, like data has to be shaped the same. However, just
shaping the data the same isn’t enough. The shape has to be correct
for the algorithms you employ to analyze it. Later chapters (starting
with Chapter 7) help you understand the need to shape data in
various ways.

3. Analyzing the data. When analyzing data, you seldom employ a
single algorithm and call it good enough. You can’t know which
algorithm will produce the most useful results at the outset. To find
the best result from your dataset, you experiment on it using several
algorithms. This practice is emphasized in the later chapters of the
book when you start performing serious data analysis.

4. Presenting a result. A picture is worth a thousand words, or so they
say. However, you need the picture to say the correct words or your
message gets lost. Using the MATLAB-like plotting functionality

.- Wondershare

Trial Version

PDFelement

provided by the Matplotlib library, you can create multiple
presentations of the same data, each of which describes the data
graphically in different ways. (MATLAB, found at
https://www.mathworks.com/products/matlab.html, is a widely
used mathematical modeling program; see MATLAB For Dummies,
2nd Edition, by John Paul Mueller and Jim Sizemore [Wiley] for
more details.) To ensure that your meaning really isn’t lost, you must
experiment with various presentation methods and determine which
one works best.

Considering Speed of Execution

Computers are known for their prowess in crunching numbers. Even so,
analysis takes considerable processing power. The datasets are so large
that you can bog down even an incredibly powerful system. In general,
the following factors control the speed of execution for your data science
application:

» Dataset size: Data science relies on huge datasets in many cases.
Yes, you can make a robot see objects using a modest dataset size,
but when it comes to making business decisions, larger is better in
most situations. The application type determines the size of your
dataset in part, but dataset size also relies on the size of the source
data. Underestimating the effect of dataset size is deadly in data
science applications, especially those that need to operate in real
time (such as self-driving cars).

» Loading technique: The method you use to load data for analysis is
critical, and you should always use the fastest means at your
disposal, even if it means upgrading your hardware to do so.
Working with data in memory is always faster than working with
data stored on disk. Accessing local data is always faster than
accessing it across a network. Performing data science tasks that rely
on internet access through web services is probably the slowest
method of all. Chapter 6 helps you understand loading techniques in
more detail. You also see the effects of loading technique later in the
book.

.- Wondershare

Trial Version

PDFelement

» Coding style: Some people will likely try to tell you that Python’s
programming paradigms make writing a slow application nearly
impossible. They’re wrong. Anyone can create a slow application
using any language by employing coding techniques that don’t make
the best use of programming language functionality. To create fast
data science applications, you must use best-of-method coding
techniques. The techniques demonstrated in this book are a great
starting point.

» Machine capability: Running data science applications on a
memory-constrained system with a slower processor is an extremely
painful process akin to sitting in the dentist’s chair for a root canal
without Novocain. The system you use needs to have the best
hardware you can afford. Given that data science applications are
both processor and disk bound, you can’t really cut corners in any
area and expect great results.

» Analysis algorithm: The algorithm you use determines the kind of
result you obtain and controls execution speed. Many of the chapters
in the latter parts of this book demonstrate multiple methods to
achieve a goal using different algorithms. However, you must still
experiment to find the best algorithm for your particular dataset.

rememeer A Number of the chapters in this book emphasize performance,
most notably speed and reliability, because both factors are critical
to data science applications. Even though database applications
tend to emphasize the need for speed and reliability to some extent,
the combination of huge dataset access (disk-bound issues) and data
analysis (processor-bound issues) in data science applications
makes the need to make good choices even more critical.

Visualizing Power

Python makes it possible to explore the data science environment
without resorting to using a debugger or debugging code, as would be

.- Wondershare

Trial Version

PDFelement

needed in many other languages. The print()function and dir ()
function let you examine any object interactively. In short, you can load
something up and play with it for a while to see just how the developer
put it together. Playing with the data, visualizing what it means to you
personally, can often help you gain new insights and create new ideas.
Judging by many online conversations, playing with the data is the part
of data science that its practitioners find the most fun.

To get an idea of how the print() and dir () functions work, you can
try the following code that appears in the downloadable source:

from sklearn.utils import Bunch

items = dir(Bunch)

for item in items:

if 'key' in item:
print(item)

Don't worry if you don’t understand this code, you’ll discover more
about it later. Beginning with Chapter 4, you start to play with code
more, and the various sections give you more details. You can also
obtain the book Beginning Programming with Python For Dummies, 3rd
Edition, by John Paul Mueller (Wiley) if you want a more detailed
tutorial. Just follow along with the concept of playing with data for now.
You see the following output when you run this code:

fromkeys

keys
Scikit-learn datasets appear within bunches (a bunch is a kind of data
structure). When you import a dataset, that dataset will have certain
functions that you can use with it that are determined by the code used to
define the data structure — a bunch. This code shows which functions
deal with keys — the data identifiers for the values (one or more
columns of information) in the dataset. Each row in the dataset has a
unique key, even if the values in that row repeat another row in the
dataset. You can use these functions to perform useful work with the
dataset as part of building your application.

Before you can work with a dataset, you must provide access to it in the
local environment. The following code shows the import process and

Trial Version

.- Wondershare

PDFelement

demonstrates how you can use the keys () function to display a list of
keys that you can use to access data within the dataset.

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()

print(housing.keys())
The output from this code shows that you can access a variety of
information about the dataset:

dict_keys(['data', 'target', 'frame', 'target_names',

'feature_names', 'DESCR'])

You don’t have to know what all these names mean for now, but
feature_names tells you about the data columns used in the dataset.
When you have a list of keys you can use, you can access individual data
items. For example, the following code shows a list of all the feature
names contained in the California Housing dataset. Python really does
make it possible to know quite a lot about a dataset before you have to
work with it in depth.

print(housing.feature_names)
In this case, you see the following column names for the data:

['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms',
'Population', 'AveOccup', 'Latitude', 'Longitude']

Using the Python Ecosystem for Data Science

You have already seen the need to load libraries in order to perform data
science tasks in Python. The following sections provide an overview of

the libraries you use for the data science examples in this book. Various

book examples show the libraries at work.

Accessing scientific tools using SciPy

The SciPy stack (http://www.scipy.org/) contains a host of other
libraries that you can also download separately. These libraries provide
support for mathematics, science, and engineering. When you obtain
SciPy, you get a set of libraries designed to work together to create
applications of various sorts. These libraries are

Wondershare

Trial Version Q% PDFelement

» NumPy

» SciPy

» Matplotlib
» Jupyter

» Sympy
» pandas

The SciPy library itself focuses on numerical routines, such as routines
for numerical integration and optimization. SciPy is a general-purpose
library that provides functionality for multiple problem domains. It also
provides support for domain-specific libraries, such as Scikit-learn,
Scikit-image, and statsmodels.

Performing fundamental scientific computing using

NumPy

The NumPy library (http://www.numpy.org/) provides the means for
performing n-dimensional array manipulation, which is critical for data
science work. The California Housing dataset used in the examples in
Chapters 1 and 2 is an example of an n-dimensional array, and you
couldn't easily access it without NumPy functions that include support
for linear algebra, Fourier transform, and random-number generation
(see the listing of functions at
http://docs.scipy.org/doc/numpy/reference/routines.html).

Performing data analysis using pandas

The pandas library (http://pandas.pydata.org/) provides support for
data structures and data analysis tools. The library is optimized to
perform data science tasks especially fast and efficiently. The basic
principle behind pandas is to provide data analysis and modeling support
for Python that is similar to other languages, such as R.

Implementing machine learning using Scikit-learn
The Scikit-learn library (http://scikit-learn.org/stable/) is one of
a number of Scikit libraries that build on the capabilities provided by

Trial Version

.- Wondershare

PDFelement

NumPy and SciPy to allow Python developers to perform domain-
specific tasks. In this case, the library focuses on data mining and data
analysis. It provides access to the following sorts of functionality:

» Classification

» Regression

» Clustering

» Dimensionality reduction
» Model selection

» Preprocessing

A number of these functions appear as chapter headings in the book. As
a result, you can assume that Scikit-learn is the most important library
for the book (even though it relies on other libraries to perform its work).

Going for deep learning with Keras and TensorFlow
Keras (https://keras.io/) is an application programming interface
(API) that is used to train deep learning models. An API often specifies a
model for doing something, but it doesn’t provide an implementation.
Consequently, you need an implementation of Keras to perform useful
work, which is where the machine learning platform TensorFlow
(https://www.tensorflow.org/) comes into play because Keras runs
on top of it.

When working with an API, you’re looking for ways to simplify things.
Keras makes things easy by offering the following features:

» A consistent interface: The Keras interface is optimized for
common use cases with an emphasis on actionable feedback for
fixing user errors.

» A building-block approach: Using a black-box approach makes it
easy to create models by connecting configurable building blocks
together with only a few restrictions on how you can connect them.

Wondershare

Trial Version Q% PDFelement

» Extendability: You can easily add custom building blocks to express
new ideas for research that include new layers, loss functions, and
models.

» Parallel processing: To run applications fast today, you need good
parallel processing support. Keras runs on both CPUs and GPUs. It
will also make use of multiple CPUs, when available.

» Direct Python support: You don’t have to do anything special to
make the TensorFlow implementation of Keras work with Python,
which can be a major stumbling block when working with other sorts
of APIs.

Performing analysis efficiently using XGBoost

You use XGBoost (https://xgboost.readthedocs.io/en/stable/),
which stands for extreme gradient boosting, to perform data analysis in
an efficient, flexible, and portable manner. This library makes it easier to
perform analysis using gradient boosting, which is explained in Chapter
20. Chapter 20 also shows how to work with XGBoost to get the most
benefit from the analysis process. You can use this library to solve
regression, classification, and ranking problems. XGBoost has proven its
capabilities by helping individuals and teams win virtually every Kaggle
structured-data competition. In addition, XGBoost supports Python, R,
Java, Scala, Julia, Perl, and other languages.

Plotting the data using Matplotlib

The Matplotlib library (http://matplotlib.org/) gives you a
MATLAB-like interface for creating data presentations of the analysis
you perform. The library is currently limited to 2-D output, but it still
provides you with the means to express graphically the data patterns you
see in the data you analyze. Without this library, you couldn’t create
output that people outside the data science community could easily
understand. Chapter 10 offers a great introduction to Matplotlib.

Creating graphs with NetworkX
To properly study the relationships between complex data in a
networked system (such as that used by your GPS setup to discover

Wondershare

Trial Version Q% PDFelement

routes through city streets), you need a library to create, manipulate, and
study the structure of network data in various ways. In addition, the
library must provide the means to output the resulting analysis in a form
that humans understand, such as graphical data. NetworkX
(https://networkx.github.io/) enables you to perform this sort of
analysis. The advantage of NetworkX is that nodes can be anything
(including images) and edges can hold arbitrary data. These features
allow you to perform a much broader range of analysis with NetworkX
than using custom code would (and such code would be time consuming
to create).

Wondershare

Trial Version Q% PDFelement

Chapter 3
Setting Up Python for Data Science

IN THIS CHAPTER

» Using Anaconda to work with Python

» Creating an Anaconda installation on Linux, Mac OS, and
Windows

» Getting and installing the datasets and example code

Before you can do too much with Python or use it to solve data science
problems, you need a workable installation. In addition, you need access
to the datasets and code used for this book. Downloading the sample
code and installing it on your system is the best way to absorb more
understanding from the book. This chapter helps you get your system set
up so that you can easily follow the examples in the remainder of the
book.

This book relies on Jupyter Notebook version 6.5.2 supplied with the
Anaconda 3 environment (version 2023.03) that supports the Python
version 3.10.9 to create the coding examples. For the examples to work,
you must use Python 3.10.9 and the packages present in Anaconda 3
version 2023.03 (listed as conda version 23.1.0). Older versions of both
Python and its packages tend to lack needed features, and newer versions
tend to produce breaking changes. If you use some other version of
Python, the examples likely won’t work as intended. As an alternative to
working with Jupyter Notebook on a desktop system, you can also work
on Google Colab on your mobile device, as described in Chapter 4.

rememser Using the downloadable source doesn’t prevent you from typing
the examples on your own, following them using a debugger,
expanding them, or working with the code in all sorts of ways. The

Trial Version

.- Wondershare

PDFelement

downloadable source is there to help you get a good start with your
data science and Python learning experience. After you see how the
code works when it’s correctly typed and configured, you can try to
create the examples on your own. If you make a mistake, you can
compare what you’ve typed with the downloadable source and
discover precisely where the error exists. You can find the
downloadable source for this chapter in the
P4DS4D3_03_Sample.ipynb and P4DS4D3_03_Dataset_Load.ipynb
files. (The Introduction tells you where to download the source
code for this book.)

Working with Anaconda

Anaconda is actually a collection of tools, as described at
https://docs.anaconda.com/free/navigator/overview/. Jupyter
Notebook is just one of those tools, and it's the one used most often in
this book. However, it’s also helpful to know about the other tools that
Anaconda provides because they can help you create Python
applications faster and also work with some other languages. The

following sections describe the two Anaconda tools that are used in this
book.

Using Jupyter Notebook

Jupyter Notebook is an Integrated Development Environment (IDE) that
promotes the concept of literate programming as originally defined by
Donald Knuth (https://guides.nyu.edu/datascience/literate-
prog). The idea behind literate programming is to make learning as easy
as possible as well as provide a means of presenting code that can
include graphics and explanatory text. Such an environment works
incredibly well in a book because you can both easily experiment and
obtain detailed information as you work through the source code.

This chapter doesn’t focus much on Jupyter Notebook usage because it’s
similar to working with Google Colab, which Chapter 4 explains fully.
Even though there are slight differences in commands and appearance
between the two, the products are essentially the same.

Trial Version

.- Wondershare

PDFelement

However, you do want to check your versions of Anaconda, Jupyter
Notebook, and Python before going too far in the book, and you can use
the following code to check them. You also find this code in the
P4DS4D3_03_Sample. ipynb file of the downloadable source:

import sys
print('Python Version:\n', sys.version)

import os
result = os.popen('conda --version').read()
print('\nAnaconda Version:\n', result)

result = os.popen('conda list notebook$').read()
print('\nJupyter Notebook Version:\n', result)

b

rememser 1his code essentially opens command prompts, executes
commands, and returns with the configuration information. Don't
worry about how it precisely works for now; the goal is to discover
which versions of products you have installed on your system. The
outputs show you the versions you have installed. The source code
for this book was tested (and mostly written) using these version
numbers:

Python Version:
3.10.9 | packaged by Anaconda, Inc. | .

Anaconda Version:

conda 23.1.0

Jupyter Notebook Version:
packages in environment at C:\Users\John\anaconda3:

#
Name Version ..
notebook 6.5.2

Accessing the Anaconda Prompt

You use the Anaconda Prompt to perform many command-line tasks
related to working with Jupyter Notebook. For example, you can use it
to discover the version numbers of products and libraries you have

Wondershare

Trial Version % PDFelement

installed, as in the previous section does. The Anaconda Prompt also
provides access to the conda utility, which is used to perform various
configuration tasks, such as installing libraries and creating
environments so that you can test your code in multiple ways. In short,
the Anaconda Prompt provides a gateway to allowing maximum
flexibility with your Python programming environment, which is a
significant advantage over using Google Colab (where it’s a take-it-or-
leave-it proposition).

The Anaconda Prompt is available in several places. The easiest way to
locate it is in Anaconda Navigator. You can also access it on Windows
using the Start = Anaconda Prompt (Anaconda3) command.

rememeer When you open the Anaconda Prompt, you see a window that
looks much like any other command window except that the prompt
will say something like “(base) C:\Users\John>.” The (base) part of
the prompt is important because it tells you which environment
you’re using. The (base) environment is the default and is the one
you use most in the book.

WINDOWS 10 DIFFERENCES

You may see slight differences in the Start menu organization if you're
using Windows 10. For example, to access an Anaconda prompt, you may
see the entry as Start = Anaconda 3 = Anaconda Prompt. These slight
differences won't affect your ability to work with Anaconda Navigator in
Windows 10.

Installing Anaconda on Windows

Anaconda comes with a graphical installation application for Windows,
so getting a good install means using a wizard, much as you would for
any other installation. Of course, you need a copy of the installation file
before you begin. The best place to find a particular version of

Wondershare

Trial Version Q% PDFelement

Anaconda is at the Anaconda archive, at
https://repo.anaconda.com/archive/. The following procedure
should work fine on any Windows system, whether you use the 32-bit or
the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-
2023.03-1-Windows-x86_64.exe. The download is currently more
than 786 MB, so you may not want to try it using the free connection
at your favorite coffee shop. The version number is embedded as part
of the filename. In this case, the filename refers to version 2023.03,
which is the version used for this book. If you use some other
version, you may experience problems with the source code and
need to make adjustments when working with it.

2. Double-click the installation file.

(You may see an Open File — Security Warning dialog box that asks
whether you want to run this file. Click Run if you see this dialog
box pop up.) You see an Anaconda 3 Setup dialog box. The exact
dialog box you see depends on which version of the Anaconda
installation program you download. If you have a 64-bit operating
system, it's always best to use the 64-bit version of Anaconda so that
you obtain the best possible performance. This first dialog box tells
you when you have the 64-bit version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through
the licensing agreement so that you know the terms of usage.

4. Click I Agree if you agree to the licensing agreement.

You're asked what sort of installation type to perform, as shown in
Figure 3-1. In most cases, you want to install the product just for
yourself. The exception is if you have multiple people using your
system and they all need access to Anaconda.

Wondershare

. : [
Trial Version &~ PppDFelement

2 Anaconda3 2023.07-1 (64-bit) Setup — X

Select Installation Type

:J ANACONDA. Please select the type of installation you would like to perform for
Anaconda3 2023.07-1 (64-bit).

Install for:

© Just Me (recommended)

() All Users (requires admin privileges)

Cancel

FIGURE 3-1: Tell the wizard how to install Anaconda on your system.

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in
Figure 3-2. The book assumes that you use the default location. If
you choose some other location, you may have to modify some
procedures later in the book to work with your setup.

Wondershare

Trial Version Q% PDFelement

2 Anaconda3 2023.07-1 (64-bit) Setup — X

() ANACONDA. Choose the folder in which to install Anaconda3 2023.07-1
(64-bit).

Setup will install Anaconda3 2023.07-1 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Destination Folder
C:\Wsers\john\anaconda3 Browse...

Space required: 4.9 GB
Space available: 548.3 GB

<o cace

FIGURE 3-2: Specify an installation location.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-3.
These options are selected by default and there isn’t a good reason to
change them in most cases.

Wondershare

Trial Version Q% PDFelement

) Anaconda3 2023.07-1 (64-bit) Setup — X

. Advanced Installation Options
_) ANACONDA Customize how Anaconda3 integrates with Windows

@ Create start menu shortcuts (supported packages only).
[] Add Anaconda3 to my PATH environment variable

NOT recommended. This can lead to conflicts with other applications, Instead, use
the Commmand Prompt and Powershell menus added to the Windows Start Menu.

8 Register Anaconda3 as my default Python 3.11

Recommended. Allows other programs, such as VSCode, PyCharm, etc. to
automatically detect Anaconda3 as the primary Python 3. 11 on the system.

[_] Clear the package cache upon completion
Recommended. Recovers some disk space without harming functionality.

< Back “ Install Cancel

FIGURE 3-3: Configure the advanced installation options.

ne The Add Anaconda to My PATH Environment Variable
option is cleared by default, and you should leave it cleared. Adding
it to the PATH environment variable does offer the ability to locate
the Anaconda files when using a standard command prompt, but if
you have multiple versions of Anaconda installed, only the first
version you installed is accessible. Opening an Anaconda Prompt
instead is far better so that you gain access to the version you expect.

. Change the advanced installation options (if necessary) and then
click Install.

You see an Installing dialog box with a progress bar. The installation
process can take a few minutes, so get yourself a cup of coffee and
read the comics for a while. When the installation process is over,
you see a Next button enabled.

Wondershare

Trial Version % PDFelement

8. Click Next.
The wizard tells you that the installation is complete.

9. Click Finish.
You're ready to begin using Anaconda.

A WORD ABOUT THE SCREENSHOTS

As you work your way through the book, you’ll use an IDE of your choice to
open the Python and Jupyter Notebook files containing the book’s source
code. Every screenshot in this book that contains IDE-specific information
relies on Anaconda because Anaconda runs on all the platforms supported
by the book. The use of Anaconda doesn’t imply that it's the best IDE or
that the authors are making any sort of recommendation for it; it simply
works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI)
environment, Jupyter Notebook, is precisely the same across all three
platforms, and you won’t even see any significant difference in the
presentation. The differences you do see are minor, and you should ignore
them as you work through the book. With this in mind, the book does rely
heavily on Windows screenshots. When working on a Linux or Mac OS X,
you should expect to see some differences in presentation, but these
differences shouldn’t reduce your ability to work with the examples.

Installing Anaconda on Linux

You use the command line to install Anaconda on Linux — there is no
graphical installation option. Before you can perform the install, you
must download a copy of the Linux software from the Anaconda site at
https://repo.anaconda.com/archive/. On most Linux systems, you

can type curl https://repo.anaconda.com/archive/Anaconda3-
2023.03-Linux-x86 64.sh--output Anaconda3-2023.03-Linux-
x86_64.sh and press Enter in the terminal window to get your copy. The
following procedure should work fine on any Linux system, whether you
use the 32-bit or the 64-bit version of Anaconda.

1. Open a copy of Terminal.

Wondershare

Trial Version Q% PDFelement

You see the Terminal window appear.

. Change directories to the downloaded copy of Anaconda on your
system.

The name of this file varies, but normally it appears as Anaconda3-
2023.03-1-Linux-x86_64.sh. The version number is embedded as
part of the filename. In this case, the filename refers to version
2023.03, which is the version used for this book. If you use some
other version, you may experience problems with the source code
and need to make adjustments when working with it.

. Type bash Anaconda3-2023.03-1-Linux-x86_64.sh and press Enter.

An installation wizard starts that asks you to accept the licensing
terms for using Anaconda. Note that this isn't a GUI installation; it’s
text-based.

. Read the licensing agreement and accept the terms using the
method required for your version of Linux, which normally
consists of typing yes and pressing Enter.

The wizard asks you to provide an installation location for
Anaconda. The book assumes that you use the default location of
/home/<user name>/anaconda3. If you choose some other location,
you may have to modify some procedures later in the book to work
with your setup.

. Provide an installation location (if necessary) and press Enter (or
click Next).

You see the application extraction process begin. After the extraction
is complete, you see a series of installation messages.

. Type yes and press Enter to initialize Anaconda 3 by running
theconda initcommand.

You see a series of setup messages as conda performs the required
initialization tasks.

. Close the terminal window and open a new one before you try to
work with Anaconda 3.

.- Wondershare

Trial Version

PDFelement

When you reopen the terminal, the prompt will change to (base)
<username>@<machine name>:~$ unless you specify that you don't
want conda starting during the startup process.

ne To keep conda from automatically starting each time you log
in, type conda config --set auto_activate_base false and press Enter
at the conda prompt. If you’re accessing Jupyter Notebook on a
Linux server from a remote browser, follow the instructions at
https://docs.anaconda.com/free/anaconda/jupyter-

notebooks/remote-jupyter-notebook/.

Installing Anaconda on Mac OS X

The Mac OS X installation comes only in one form: 64-bit. Before you
can perform the install, you must download a copy of the Mac OS X
software from the Anaconda site at
https://repo.anaconda.com/archive/. The following steps help you
install Anaconda 64-bit on a Mac system.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-
2023.03-1-Mac0SX-x86_64.pkg. The version number is embedded
as part of the filename. In this case, the filename refers to version
2023.03, which is the version used for this book. If you use some
other version, you may experience problems with the source code
and need to make adjustments when working with it.

2. Double-click the installation file.
You see an introduction dialog box.
3. Click Continue.

The wizard asks whether you want to review the Read Me materials.
You can read these materials later. For now, you can safely skip the
information.

Wondershare

Trial Version Q% PDFelement

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through
the licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The
destination controls whether the installation is for an individual user
or a group.

warning YOU IMay See an error message stating that you can't install
Anaconda on the system. The error message occurs because of a bug
in the installer and has nothing to do with your system. To get rid of
the error message, choose the Install Only for Me option. You can’t
install Anaconda for a group of users on a Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing
the installation type. Click Change Install Location if you want to
modify where Anaconda is installed on your system (the book
assumes that you use the default path of ~/anaconda). Click
Customize if you want to modify how the installer works. For
example, you can choose not to add Anaconda to your PATH
statement. However, the book assumes that you have chosen the
default install options and there isn't a good reason to change them
unless you have another copy of Python 2.7 installed somewhere
else.

7. Click Install.

You see the installation begin. A progress bar tells you how the
installation process is progressing. When the installation is complete,
you see a completion dialog box.

8. Click Continue.
You’re ready to begin using Anaconda.

Wondershare

Trial Version Q% PDFelement

Downloading the Datasets and Example Code

This book is about using Python to perform data science tasks. Of
course, you could spend all your time creating the example code from
scratch, debugging it, and only then discovering how it relates to data
science, or you can take the easy way and download the prewritten code
so that you can get right to work. Likewise, creating datasets large
enough for data science purposes would take quite a while. Fortunately,
you can access standardized, precreated datasets quite easily using
features provided in some of the data science libraries. The following
sections help you download and use the example code and datasets so
that you can save time and get right to work with data science—specific
tasks.

Using Jupyter Notebook

To make working with the relatively complex code in this book easier,
you use Jupyter Notebook or Google Colab (see Chapter 4). This
interface makes it easy to create Python notebook files that can contain
any number of examples, each of which can run individually. The
program runs in your browser, so which platform you use for
development doesn’t matter; as long as it has a browser, you should be
OK.

Starting Jupyter Notebook

Most platforms provide an icon to access Jupyter Notebook. All you
need to do is open this icon to access Jupyter Notebook. For example, on
a Windows system, you choose Start = Jupyter Notebook (Anaconda 3)
(or Start = Anaconda3 = Jupyter Notebook on a Windows 10 system).
The precise appearance on your system depends on the browser you use
and the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon,
you can normally type jupyter notebook and press Enter while in one of
the conda environments. To access a conda environment, open an
Anaconda Prompt or type conda activate and press Enter at the terminal
prompt.

Wondershare

Trial Version % PDFelement

Stopping the Jupyter Notebook server

No matter how you start Jupyter Notebook (or just Notebook, as it
appears in the remainder of the book), the system generally opens a
command prompt or terminal window to host Notebook. This window
contains a server that makes the application work. After you close the
browser window when a session is complete, select the server window
and press Ctrl+C or Ctrl+Break to stop the server. Type y and press
Enter if asked to do so. To exit the conda environment, type conda
deactivate and press Enter.

Defining the code repository

The code you create and use in this book will reside in a repository on
your hard drive. Think of a repository as a kind of filing cabinet where
you put your code. Notebook opens a drawer, takes out the folder, and
shows the code to you. You can modify it, run individual examples
within the folder, add new examples, and simply interact with your code
in a natural manner. The following sections get you started with
Notebook so that you can see how this whole repository concept works.

Defining a new folder

You use folders to hold your code files for a particular project. The
project for this book is P4ADS4D3 (which stands for Python for Data
Science For Dummies, 3rd Edition). The following steps help you create
a new folder for this book.

1. Choose New = Folder.

Notebook creates a new folder for you. The name of the folder can
vary, but for Windows users, it's simply listed as Untitled Folder.
You may have to scroll down the list of available folders to find the
folder in question.

2. Place a check in the box next to Untitled Folder.

3. Click Rename at the top of the page.
You see the Rename Directory dialog box, shown in Figure 3-4.

Wondershare

Trial Version % PDFelement

Rename directory

Enter a new directory name

FIGURE 3-4: Create a folder to use to hold the book’s code.

4. Type P4DS4D3 and press Enter.
Notebook renames the folder for you.

Creating a new notebook

Every new notebook is like a file folder. You can place individual
examples within the file folder, just as you would sheets of paper into a
physical file folder. Each example appears in a cell. You can put other
sorts of things in the file folder, too, but you see how these things work
as the book progresses. Use these steps to create a new notebook.

1. Click the P4DS4D3 entry on the Home page.
You see the contents of the project folder for this book, which will be
blank if you’re performing this exercise from scratch.

2. Choose New = Python 3 (ipykernel).

You see a new tab open in the browser with the new notebook.
Notice that the notebook contains a cell and that Notebook has
highlighted the cell so that you can begin typing code in it. The title
of the notebook is Untitled right now. That’s not a particularly
helpful title, so you need to change it.

3. Click Untitled on the page.
Notebook asks whether you want to use a new name.

4. Type P4DS4D3_03_Sample and press Enter.

The new name tells you that this is a file for Python for Data Science
For Dummies, 3rd Edition, Chapter 3, Sample.ipynb. Using this

Wondershare

Trial Version Q% PDFelement

naming convention will let you easily differentiate these files from
other files in your repository.

Adding notebook content

Of course, the Sample notebook doesn’t contain anything just yet. This
book follows a convention of putting the source code files together that
makes them easy to use. The following steps tell you about this
convention:

1. Choose Markdown from the drop-down list that currently
contains the word Code.

A Markdown cell contains documentation text. You can put anything
in a Markdown cell because Notebook won’t interpret it. By using
Markdown cells, you can easily document precisely what you mean
when writing code.

2. Type # Downloading the Datasets and Example Code and click Run
(the button with the right-pointing arrow on the toolbar).

The hash mark (#) creates a heading. A single # creates a first-level
heading. The text that follows contains that actual heading
information. Clicking Run turns the formatted text into a heading.
Notice that Notebook automatically creates a new cell for you to use.

3. Choose Markdown, type ## Defining the code repository, and
click Run.

Notebook creates a second-level heading, which looks smaller than a
first-level heading.

4. Choose Markdown, type ### Adding notebook content, and click
Run.

Notebook creates a third-level heading. Your headings now match
the hierarchy that starts with the first-level heading for this section.
Using this approach helps you to easily locate a particular piece of
code in the downloadable source. As always, Notebook creates a
new cell for you, and the cell type automatically changes to Code, so
you’re ready to type some code for this example.

5. Type print('Python is really cool!") and click Run.

Wondershare

Trial Version Q% PDFelement

Notice that the code is color coded so that you can tell the difference
between a function (print) and its associated data ('Python is
really cool!'). You see the combined output of the various
markdown and coding steps in Figure 3-5. The output is part of the
same cell as the code. However, Notebook visually separates the
output from the code so that you can tell them apart. Notebook
automatically creates a new cell for you.

Downloading the Datasets and
Example Code

Defining the code repository

Adding notebook content

In [1]: print{ 'Python is really cool!')

Fython is really cool!

FIGURE 3-5: Notebook uses cells to store your code.

When you finish working with a notebook, shutting it down is important.
To close a notebook, choose File = Close and Halt. You return to the
P4DS4D3 page, where you can see the notebook you just created added
to the list.

EXxporting a notebook

It isn't much fun to create notebooks and keep them all to yourself. At
some point, you want to share them with other people. To perform this
task, you must export your notebook from the repository to a file. You
can then send the file to someone else who will import it into their
repository.

The previous section shows how to create a notebook named
P4DS4D3_03_Sample. You can open this notebook by clicking its entry
in the repository list. The file reopens so that you can see your code

Wondershare

Trial Version Q% PDFelement

again. To export this code, choose File = Download As = Notebook
(.ipynb). What you see next depends on your browser, but you generally
see some sort of dialog box for saving the notebook as a file. Use the
same method for saving the Notebook file as you use for any other file
you save using your browser.

Removing a notebook

Sometimes notebooks get outdated or you simply don't need to work
with them any longer. Rather than allow your repository to get clogged
with files you don’t need, you can remove these unwanted notebooks
from the list. Notice the check box next to the
P4DS4D3_03_Sample.ipynb entry. Use these steps to remove the file:

1. Select the check box next to ther4DsS4D3_03_Sample.ipynbentry.

2. Click the Delete (trashcan) icon.
You see a Delete notebook warning message.

3. Click Delete.
Notebook removes the notebook file from the list.

Importing a notebook

To use the source code from this book, you must import the downloaded
files into your repository. The source code comes in an archive file that
you extract to a location on your hard drive. The archive contains a list
of .ipynb (IPython Notebook) files containing the source code for this
book (see the Introduction for details on downloading the source code).
The following steps tell how to import these files into your repository:

1. Click Upload on the Notebook P4DS4D3 page.

What you see depends on your browser. In most cases, you see some
type of File Upload dialog box that provides access to the files on
your hard drive.

2. Navigate to the directory containing the files you want to import
into Notebook.

Wondershare

Trial Version Q% PDFelement

3. Highlight one or more files to import and click the Open (or
other, similar) button to begin the upload process.

You see the file added to an upload list. The file isn't part of the
repository yet — you've simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using
it.

Understanding the datasets used in this book

This book uses a number of datasets, all of which appear in the Scikit-
learn library. These datasets demonstrate various ways in which you can
interact with data, and you use them in the examples to perform a variety
of tasks. The following list provides a quick overview of the functions
used to import each of the datasets into your Python code:

» fetch_openml(): An open repository for machine learning data and
experiments. Anyone can upload open datasets to allow access to
them.

» fetch_california_housing(): Regression analysis with the
California housing dataset.

» https://archive.ics.uci.edu/ml/machine-learning-
databases/statlog/german/: Analysis with the German Credit

dataset described at
https://archive.ics.uci.edu/ml/datasets/statlog+

(german+credit+data).

» https://raw.githubusercontent.com/allisonhorst/palmerpeng
uins/main/inst/extdata/penguins.csv: Analysis with the Palmer

Penguins dataset described at
https://allisonhorst.github.io/palmerpenguins/articles/in
tro.html.

» http://files.grouplens.org/datasets/movielens/ml-1m.zip:

Analysis with the MovieLens dataset described at
https://grouplens.org/datasets/movielens/.

Wondershare

Trial Version Q% PDFelement

The technique for loading each of these datasets is similar across
examples (some of them require extra code provided with the book). The
following example shows how to load the California Housing dataset.
You can find the code in the P4DS4D3_03_Dataset_Load.ipynb

notebook.

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
print(housing.data.shape)

To see how the code works, click Run Cell. The output from the print
call is (20640, 8). You can see the output shown in Figure 3-6. (Be
patient; the dataset load can require a few seconds to complete.)

Downloading the Datasets and
Example Code

Understanding the datasets used in this
book

In [1]: from sklearn.datasets impert fetch_california_housing
housing = fetch_california_housing()
print({housing.data.shape)

(20648, 8)

FIGURE 3-6: The housing object contains the loaded dataset.

Wondershare

Trial Version Q% PDFelement

Chapter 4
Working with Google Colab

IN THIS CHAPTER
» Understanding Google Colab

» Accessing Google and Colab
» Performing essential Colab tasks

» Obtaining additional information

Colaboratory
(https://colab.research.google.com/notebooks/welcome.ipynb),
or Colab for short, is a free Google cloud-based service that replicates
Jupyter Notebook in the cloud. You don’t have to install anything on
your system to use it. In most respects, you use Colab as you would a
desktop installation of Jupyter Notebook (often shortened to Notebook
with an uppercase N throughout the book). This chapter explores Colab
and discusses techniques for working with notebooks using either
Jupyter Notebook or Colab.

rememser Because you may not be using the same versions of products
that appear in this book, the book’s example source code may or
may not work precisely as described in the text when you use
Colab. Also when using Colab, you may not see the results as
presented in this book because of the differences in hardware
between platforms. The introductory sections of this chapter go into
more detail about Colab and help you understand what you can
expect from it. To use Colab, you must have a free Google account
and then access Colab using your account. Otherwise, most of the
Colab features won’t work.

Wondershare

Trial Version Q% PDFelement

As with Notebook, you can use Colab to perform specific tasks in a cell-
oriented paradigm. The next sections of the chapter go through a range
of task-related topics that start with the use of notebooks. If you’ve used
Notebook in previous chapters, you notice a strong resemblance between
Notebook and Colab. Of course, you also want to perform other sorts of
tasks, such as creating various cell types and using them to create
notebooks that look like those you create with Notebook.

Finally, this chapter can’t address every aspect of Colab, so the final
section of the chapter serves as a handy resource for locating the most
reliable information about Colab.

Defining Google Colab

Google Colab is the cloud version of Notebook. In fact, the Welcome
page makes this fact apparent. It even uses IPython (the previous name
for Jupyter) Notebook (. ipynb) files for the site. That's right: You're
viewing a Notebook right there in your browser. Even though the two
applications are similar and they both use . ipynb files, they do have
some differences that you need to know about. The following sections
help you understand the Colab differences.

Understanding what Google Colab does

You can use Colab to perform many tasks, but for the purpose of this
book, you use it to write and run code, create its associated
documentation, and display graphics, just as you do with Notebook. The
techniques you use are similar, in fact, to using Notebook, but later in
the chapter, you find out the small differences between the two. Even so,
the downloadable source for this book will run without much effort on
your part.

Notebook is a localized application in that you use local resources with
it. You could potentially use other sources, but doing so could prove
inconvenient or impossible in some cases. For example, according to
https://help.github.com/articles/working-with-jupyter-
notebook-files-on-github/, your Notebook files will appear as static
HTML pages when you use a GitHub repository

Trial Version

.- Wondershare

PDFelement

(https://docs.github.com/en/get-started/quickstart/create-a-
repo). In fact, some features won’t work at all. Colab enables you to
fully interact with your notebook files using GitHub as a repository. In
fact, Colab supports a number of online storage options, so you can
regard Colab as your online partner in creating Python code.

The other reason that you really need to know about Colab is that you
can use it with your alternative device. During the writing process, some
of the example code was tested on an Android-based tablet (an ASUS
ZenPad 3S 10). The target tablet has Chrome installed and executes the
code well enough to follow the examples. All this said, you likely won’t
want to try to write code using a tablet of that size — the text was
incredibly small, for one thing, and the lack of a keyboard could be a
problem, too. The point is that you don’t absolutely have to have a
Windows, Linux, or OS X system to try the code, but the alternatives
may not provide quite the performance you expect.

rememser Google Colab generally doesn’t work with browsers other than

Chrome or Firefox. In most cases, you see an error message and no
other display if you try to start Colab in a browser that it doesn’t
support. Your copy of Firefox may also need some configuration to
work properly (see the “Using local runtime support” section, later
in this chapter, for details). The amount of configuration that you
perform depends on which Colab features you choose to use. Many
examples work fine in Firefox without any modification.

Considering the online coding difference

For the most part, you use Colab just as you would Notebook. However,
some features work differently. For example, to execute the code within
a cell, you select that cell and click the Run button (right-facing arrow)
for that cell. The current cell remains selected, which means that you
must actually initiate the selection of the next cell as a separate action. A
block next to the output lets you clear just that output without affecting
any other cell. Hovering the mouse over the block tells you when

Trial Version

mm Wondershare
| |

PDFelement

someone executed the content. On the right side of the cell, you see a
vertical ellipsis that you can click to see a menu of options for that cell.
The result is the same as when using Notebook, but the process for
achieving the result is different.

SOME FIREFOX ODDITIES

Even with online help, you may still find that your copy of Firefox displays a
SecurityError: The operation is insecure. error message. The initial
error dialog box will point to some unrelated issue, such as cookies, but
you see this error message when you click Details. Simply dismissing the
dialog box by clicking OK will make Colab appear to be working because it
displays your code, but you won't see results from running the code.

As a first step to fixing this problem, make sure that your copy of Firefox is
current; older versions won't provide the required support. After you've
updated your copy, setting the network.websocket.allowInsecureFromHTTPS
preference using About :Config to True should resolve the problem, but
sometimes it doesn't. In this case, verify that Firefox actually does allow
third-party cookies by selecting Always for the Accept Third Party Cookies
and Site Data option and selecting Remember History in the History
section on the Privacy & Security tab of the Options dialog box. Restart
Firefox after each change and then try Colab again. If none of these fixes
works, you must use Chrome to work with Colab on your system.

rememeer 1 he actual process for working with the code also differs from
Notebook. Yes, you still type the code as you always have and the
resulting code executes without problem in Colab. The difference is
in the way you can manage the code. You can upload code from
your local drive as desired and then save it to a Google Drive or
GitHub. The code becomes accessible from any device at this point
by accessing those same sources. All you need to do is load Colab
to access it.

If you use Chrome when working with Colab and choose to sync your
copy of Chrome among various devices, all your code becomes available

Wondershare

Trial Version Q% PDFelement

on any device you choose to work with. Syncing transfers your choices
to all your devices as long as those devices are also set to synchronize
their settings. Consequently, you can write code on your desktop, test it
on your tablet, and then review it on your smart phone. It's all the same
code, all the same repository, and the same Chrome setup, just a different
device.

What you may find, however, is that all this flexibility comes at the price
of speed and ergonomics. In reviewing the various options, a local copy
of Notebook generally executes the code in this book faster than a copy
of Colab using any of the available configurations (even when working
with a local copy of the .ipynb file). So, you trade speed for flexibility
when working with Colab. In addition, viewing the source code on a
tablet is hard; viewing it on a smart phone is nearly impossible. If you
make the text large enough to see, you can’t see enough of the code to
make any sort of reasonable editing possible. At best, you could review
the code one line at a time to determine how it works.

ne Using Notebook has other benefits, too. For example, when
working with Colab, you have options to download your source
files only as .ipynb or .py files. Colab doesn't include all the other
download options, including (but not limited to) HTML, LaTeX,
and PDF. Consequently, your options for creating presentations
from the online content are also limited to some extent. In short,
using Colab and Notebook provides different coding experiences to
some degree. They're not mutually exclusive, however, because
they share file formats. Theoretically, switching between the two as
needed is possible.

One thing to consider when using Notebook and Colab is that the two
products use most of the same terminology and many of the same
features, but they're not completely the same. The methods used to
perform tasks differ, and some of the terminology does as well. For
example, a Markdown cell in Notebook is a Text cell in Colab. The

Wondershare

Trial Version Q% PDFelement

“Performing Common Tasks” section of this chapter tells you about
other differences you need to consider.

Using local runtime support

The only time you really need local runtime support is when you want to
work within a team environment and you need the speed or resource
access advantage offered by a local runtime. When using the local
runtime support, Colab connects to a local copy of Notebook, so you
have to have Notebook installed on your local system. Using a local
runtime normally produces better speed than you obtain when relying on
the cloud. In addition, a local runtime enables you to access files on your
machine. A local runtime also gives you control over the version of
Notebook used to execute code. You can read more about local runtime
support at https://research.google.com/colaboratory/local-

runtimes.html.

warning YOU Need to consider several issues when determining the need
for local runtime support. The most obvious is that you need a local
runtime, which means that this option won’t work with your laptop
or tablet unless your laptop has Windows, Linux, or OS X and the
appropriate version of Notebook installed. Your laptop or tablet will
also need an appropriate browser; Internet Explorer is almost
guaranteed to cause problems, assuming that it works at all.

The most important consideration when using a local runtime, however,
is that your machine is now open to possible infection from Notebook
code. You need to trust the party supplying the code. The local runtime
option doesn’t open your machine to others that you share code with,
however; they must either use their own local runtimes or rely on the
cloud to execute code.

Trial Version

.- Wondershare

PDFelement

ne When working with Colab on using local runtime support and
Firefox, you must perform some special setups. Make sure to read
the Browser Specific Setups section on the Local Runtimes page to
ensure that you have Firefox configured correctly. Always verify
your setup. Firefox may appear to work correctly with Colab.
However, a configuration issue arises when you perform tasks with
it, and Colab shows error messages that say the code didn’t execute
(or something else that isn’t particularly helpful).

Working with Notebooks

As with Jupyter Notebook, the notebook forms the basis of interactions
with Colab. In fact, Colab is built on notebooks, as previously
mentioned. When you place the mouse on certain parts of the Welcome
page at
https://colab.research.google.com/notebooks/welcome.ipynb,
you see opportunities for interacting with the page by adding either code
or text entries (which you can use for notes as needed). These entries are
active, so you can interact with them. You can also move cells around
and copy the resulting material to your Google Drive. Of course, while
interacting with the Welcome page is both unexpected and fun, the real
purpose of this chapter is to demonstrate how to interact with Colab
notebooks. The following sections describe how to perform basic
notebook-related tasks with Colab.

Creating a new notebook

To create a new notebook, choose File = New Notebook. You see a new
Python 3 notebook like the one shown in Figure 4-1. The new notebook
looks similar to, but not precisely the same as, those found in Notebook.
However, all the same functionality exists.

Wondershare

Trial Version Q% PDFelement

€0 Untitledipynb - Colaboratory b4

C (Y @ https//colabresearchgooglecom/dr.. & 12 % © » O @

cO & Untitledlipynb B comment an Shae £ o
File Edit View Insert Runtime Tools Help All chanc
— + Code + Text Connect - -
A-K-X°N
2 0|
)
=]
<y
=
>
® X

FIGURE 4-1: Create a new Python 3 Notebook using the same techniques as normal.

The notebook shown in Figure 4-1 lets you change the filename by
clicking on it, just as you do when working in Notebook. Some features
work differently but provide the same results. For example, to run the
code in a particular cell, you click the right-pointing arrow on the left
side of that cell. In contrast to Notebook, the cell focus doesn’t change to
the next cell, so you must choose the next cell directly or by clicking the
Next Cell or Previous Cell buttons on the toolbar.

Opening existing notebooks

You can open existing notebooks found in local storage, on Google
Drive, or on GitHub. You can also open any of the Colab examples or
upload files from sources that you can access, such as a network drive on
your system. In all cases, you begin by choosing File = Open Notebook.
You see the dialog box shown in Figure 4-2.

Wondershare

PDFelement

Trial Version .-

Examples Recent Google Drive GitHub Upload
Filter notebooks =
Title Lastopenad « First opened B
&L Untitled.ipynb 1Z01PM 1201 PM R >
O Welcome To Colabaratory 11:59 AM Aug 27,2018 [
Lo UntitledD.ipynb April 16 April 16 B @
% WWalrrma To Mndahoratnee bdarh T hdigw 2 1 r" bl
Cancel

FIGURE 4-2: Use this dialog box to open existing notebooks.

The default view shows all the files you opened recently, regardless of
location. The files appear in alphabetical order. You can filter the
number of items displayed by typing a string into the Filter Notebooks
field. Across the top are other options for opening notebooks.

ne Even if you’re not logged in, you can still access the Colab
example projects. These projects help you understand Colab but
won’t allow you to do anything with your own projects. Even so,
you can still experiment with Colab without logging into Google
first. The following sections discuss these options in more detail.

Using Google Drive for existing notebooks

Google Drive is the default location for many operations in Colab, and
you can always choose it as a destination. When working with Drive,
you see a list of files. To open a particular file, you click its link in the
dialog box. The file opens in the current tab of your browser.

Using GitHub for existing notebooks

Wondershare

Trial Version Q% PDFelement

When working with GitHub, you initially need to provide the location of
the source code online. Make sure to select Include Private Repos if you
want to work with your private projects in addition to the public ones.

After you make the connection to GitHub, you see two lists: repositories,
which are containers for code related to a particular project; and
branches, a particular implementation of the code. Selecting a repository
and branch displays a list of notebook files that you can load into Colab.
Simply click the required link and it loads as if you were using a Google
Drive.

Using local storage for existing notebooks

If you want to use the downloadable source for this book, or any local
source for that matter, you select the Upload tab of the dialog box. In the
center is a single button, Choose File. Clicking this button opens the File
Open dialog box for your browser. You locate the file you want to
upload, just as you normally would for opening any file.

rememeer Selecting a file and clicking Open uploads the file to Google
Drive. If you make changes to the file, those changes appear on
Google Drive, not on your local drive. Depending on your browser,
you usually see a new window open with the code loaded.
However, you could also simply see a success message, in which
case you must now open the file using the same technique as you
would when using Google Drive. In some cases, your browser asks
whether you want to leave the current page. You should tell the
browser to do so.

ne The File = Upload Notebook command also uploads a file to
Google Drive. In fact, uploading a notebook works like uploading
any other kind of file, and you see the same dialog box. If you want
to upload other kinds of files, using the File = Upload Notebook
command is likely faster.

.- Wondershare

Trial Version

PDFelement

Saving notebooks

Colab provides a significant number of options for saving your
notebook. However, none of these options works with your local drive.
After you upload content from your local drive to Google Drive or
GitHub, Colab manages the content in the cloud and not on your local
drive. To save updates to your local drive, you must download the file
using the techniques found in the “Downloading notebooks” section,
later in this chapter. The following sections review the cloud-based
options for saving notebooks.

Using Drive to save notebooks

The default location for storing your data is Google Drive
(https://drive.google.com/). When you choose File = Save, the
content you create goes to the root directory of your Google Drive. If
you want to save the content to a different folder, you need to select that
folder in Google Drive.

rememeer Colab tracks the versions of your project as you perform saves.
However, as these revisions age, Colab removes the older versions.
To save a version that won’t age, you use the File = Save and Pin
Revision command. To see the revisions for your project, choose
File = Revision History. You see the output shown in Figure 4-3.
Notice that the first entry is pinned. You can also pin entries by
checking the entry in the History list. The revision history also
shows you the modification date, who made the revision, and the
size of the resulting file.

Wondershare

PDFelement

Trial Version .-

CO PADSADE 01 _Quick_Overview.ip M

< cC O

@ hitps//colabresearchgooglecom/drive/TH0.. & 12 % & & O @ :

Revision history

I:l Raw source D Inline diff Show gutput

[] only show named versions

Mon May 01 2023 14:

Text cell <MXa7gl

%% [markdown]
Learning to Use

Text cell <qE3wjé!

%% [markdown]
Loading data

Code cell <RhQLND)!

X% [code])
from sklearn.data

! housing = fetch_c
¥, ¥ = housing.da

Mon May 01 2023 14:
Text cell <MXa7CTI
%X [markdown]

Learning to Use

Text cell <qE3wjs:
5% [markdown]
#% Loading data

Code cell <RhQLND:
B [code]

from sklearn.data:
housing = fatch _c:
X, y = housing.da

- ®

@®

Finned version

May 1, 2023 2:40PM
John Mueller

M-a'ﬁl"'. i kL

John Muell pame this version

May 1, 202
Jahn Muell

Open in Colab

Restore révision

i neint"Tha cizaln 4 nrintlf™"Tha civa ar

FIGURE 4-3: Colab maintains a history of the revisions for your project.

Click the vertical ellipsis (three dots) next to an entry to see the
additional options shown in Figure 4-3. You can name the revision, open
it in Colab, or restore the current code to the selected revision. Naming a
revision makes it easier to find, and you can use this technique for
revisions that have special significance.

You can also save a copy of your project by choosing File = Save a
Copy In Drive. The copy receives the word Copy as part of its name. Of
course, you can rename it later. Colab stores the copy in the current
Google Drive folder.

Using GitHub to save notebooks

GitHub provides an alternative to Google Drive for saving content. It
offers an organized method of sharing code for the purpose of
discussion, review, and distribution. You can find GitHub at
https://github.com/.

To save a file to GitHub, choose File = Save a Copy in GitHub. If you
aren’t already signed into GitHub, Colab displays a window that requests

Wondershare

Trial Version Q% PDFelement

your sign-in information. After you sign in, you see a dialog box similar
to the one shown in Figure 4-4.

Copy to GitHub

Repository: [4 Branch: [
JohnPaulMueller/ A4DZE w main v

P4DS4D3_01_Quick_Overview.ipynb

Commit message

Created using Colaboratory

Include a link to Colaboratory

Cancel OK

FIGURE 4-4: Using GitHub means storing your data in a repository.

ne The best way to work with GitHub is to create the repository on
your GitHub account first, and then access it from Colab. This
approach lets you do things like create the Readme . md file, set
public or private access, invite others to view the code, and set up
any required security. You can go to your repositories by clicking
the button next to Repository, shown in Figure 4-4.

Using GitHub gists to save notebooks

You use GitHub gists as a means of sharing single files or other
resources with other people. Some people use them for full projects as
well, but the idea is that you have a concept that you want to share —
something that isn't quite fully formed and doesn’t represent a usable
application. You can read more about gists at
https://help.github.com/articles/about-gists/.

As with GitHub’s public and private repositories, gists come in both
public and secret (private) form. You can access both public and secret
gists from Colab, but Colab automatically keeps your files secret. To

Wondershare

Trial Version Q% PDFelement

save your current project as a gist, you choose File = Save a Copy as a
GitHub Gist. Unlike GitHub, you don’t need to create a repository or do
anything fancy in this case. The file saves as a gist without any extra
effort. The resulting entry always contains an Open in Colab button link,
as shown in Figure 4-5.

n lohnPaylMuslle:r M

&« C { @& https//gist.github.com/lohnPaulMueller = ¥ @ » 0O 'o E

-

JohnPaulMueller / pddsad3_01_quick_overview.ipynb | Secret
Created 2 minutes ago
PACS4D3_01_Quick_Cwverview.ipynb

E]'I file ? 0 forks D 0 comments LT O stars

Learning to Use Python Fast

Loading data

from sklearn.datasets import fetch_california_housing

housing = fetch_californias_housing()

X, y = housing.data,housing.target

print("The size of the data set iz {}".format(X.shape))

print(“The names of the data columns are {}", housing.feature_names)

FIGURE 4-5: Use gists to store individual files or other resources.

Downloading notebooks

Colab supports two methods for downloading notebooks to your local
drive: .ipynb files (using File = Download .ipynb) and . py files (using
File = Download .py). In both cases, the file appears in the default

download directory for your browser; Colab doesn't offer a method for
downloading the file to a specific directory.

Performing Common Tasks

Most tasks in Colab work similar to their Notebook counterparts. For
example, you can create code cells just as you do in Notebook.
Markdown cells come in three forms: text, heading, and table of

Wondershare

Trial Version Q% PDFelement

contents. They work somewhat differently from the markdown cells
found in Notebook, but the idea is the same. You can also edit and move
cells, just as you do with Notebook. One important difference is that you
can't change a cell type. A cell that you create as a header can’t suddenly
transform into a code cell. The following sections provide a brief
overview of the various features.

Creating code cells

The first cell that Colab creates for you is a code cell. The code you
create in Colab uses all the same features that you find in Notebook.
However, off to the side of the cell, you see a menu of extras that you
can use with Colab that aren’t present in Notebook. You can access some
of these options by clicking the vertical ellipsis, shown at the rightmost
end of the toolbar menu at the side of the cell in Figure 4-6.

Wondershare

Trial Version N PDFelement

Move Cell Down Extras Toolbar

Move Cell Up Delete Cell

€O PaD5403_01_Quick_Owverview.ip X

— C {t @ hitpz//colabresearchgooglecom/drive/iHtD.. @ = |v&| & » 0O :
& PAD54D3_01_Quick_Owverview.ipynb 7 B comnprt| 2% shae @ 0

File Edit View nsert Runtime Tocls Help All changes saved
RAM
+ Code + Tent Yok | I

~ Learning to Use Python Fast
(x)

O+ Loading data

SR - = - A

i ° from sklearn.datasets import fetch _california_housing
1 housing = fetch_california_housing()

X, y = housing.data, housing.target

print(“The size of the data set is {}".format(X.shape))

= print(“The names of the data columns are {}", housing.feature names)
m The size of the data set is (20649, 8)
The names of the data colusns sre £} ['MedInc’. "Housedge'. "AveRooms'.| "AfeBedrmy’. "Pooul.
~ 35 completed at 2:40PM ® X
Copy Link to Cell Mirror Cell

in Tab
Add a Comment

Open Editor Settings

FIGURE 4-6: Colab code cells contain a few extras not found in Notebook.

You use the options shown in Figure 4-6 to augment your Colab code
experience. The following list (shown in order of appearance in Figure
4-6) provides a short description of these features:

» Move Cell Up: Moves the selected cell up in the hierarchy of cells
by one position.

» Move Cell Down: Moves the selected cell down in the hierarchy of
cells by one position.

» Copy Link to Cell: Places a link to the selected cell on the
Clipboard. You can use this link to access a specific cell within the

Wondershare

Trial Version Q% PDFelement

notebook. You can embed this link anywhere on a web page or
within a notebook to allow someone to access that specific cell. The
person still sees the entire notebook but doesn’t have to search for
the cell you want to discuss.

» Add a Comment: Creates a comment balloon to the right of the cell.
This is not the same as a code comment, which exists in line with the
code but affects the entire cell. You can edit, delete, or resolve
comments. A resolved comment is one that has received attention
and is no longer applicable.

» Open Editor Settings: Displays the dialog box shown in Figure 4-7
that you can use to modify Colab’s behavior.

Settings
Editor key bindings
Site
default d
Editor Font size
14 - px
Colab Pro
Font family used when rendering code
) monospace
GitHub
Indentation width in spaces
Miscellanegus 2 B
Vertical ruler column
80

Automatically trigger code completions

D Show line numbers

[] show indentation guides

[[] Enable code folding in the editor

Automatically close brackets and quotes in code cells
Enter key accepts suggestions

(] Font ligatures

Code diagnostics

Syntax checking -

Cancel Save

.- Wondershare

Trial Version

PDFelement

FIGURE 4-7: Use the Editor tab of the Settings dialog box to modify the behavior of
the editor.

» Mirror Cell in Tab: Creates a mirror view of the selected tab in a
side window for more detailed editing.

» Delete Cell: Removes the cell from the notebook.
» Ellipsis Entries: Click the vertical ellipsis to see these entries:
¢ Select Cell: Selects all the text in the cell.

e Copy Cell: Copies the selected content in the current cell and
places it on the Clipboard.

e Cut Cell: Removes the selected content from the current cell
and places it on the Clipboard.

e Clear Output: Removes the output from the cell. You must
run the code again to regenerate the output.

e View Output Fullscreen: Displays the output (not the entire
cell or any other part of the notebook) in full-screen mode on
the host device. This option is useful when displaying a
significant amount of content or when a detailed view of
graphics helps explain a topic. Press Esc to exit full-screen
mode.

e Add a Form: Inserts a form into the cell to the right of the
code. You use forms to provide a graphical input for
parameters. Forms don’t appear in Notebook, but because of
how you create them, they won’t prevent you from running
the code in Notebook. You can read more about forms at
https://colab.research.google.com/notebooks/forms.ip

ynb.

Code cells also tell you about the code and its execution. The little run
icon next to the output displays information about the execution when
you hover your mouse over it, as shown in Figure 4-8. Clicking the
output icon below it clears the output. You must run the code again to
regenerate the output.

.- Wondershare

Trial Version

PDFelement

Creating text cells

Text cells work much like Markup cells in Notebook. However, Figure
4-9 shows that you receive additional help in formatting the text using a
graphical interface. The markup is the same, but you have the option of
allowing the GUI to help you create the markup. For example, in this
case, to create the # sign for a heading, you click the double T icon that
appears first in the list. Clicking the double T icon again would increase
the header level. To the right, you see how the text will appear in the
notebook.

Notice the menu to the right of the text cell. This menu contains many of
the same options that a code cell does. For example, you can create a list
of links to help people access specific parts of your notebook through an
index. Unlike Notebook, you can’t execute text cells to resolve the
markup they contain.

OO PADSAD3_01_Quick_Overview.ip.

& C (@ nhttps//colabresearchgooglecom/drive/TH0.. & 12 ¥ © & O @

cO £ P4D54D3 01 Quick Overviewipynb B Comment 2% Share £ o
File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text N R PN

~ Learning to Use Python Fast
(x}
O + Loading data
K- NN |

l ° from sklearn.datasets import fetch_califernia housing
ia

Run cell {Ctrl+Enter) nia_housing()
cell executed since last change piNg.target
Hata set is {}°.format(X.shape})
executed by John Musller data columns are {}", housing.feature_names)
<2 240PM (37 minutes aga)
Cd executed in 37575 P ois (20848, 8)
= T lumns are {} ["MedInc®, "Housedge', "AveRooms', "AveBedrms’, 'Popul.
m - ¥
~ 3z completed at 2:40PM ® x

FIGURE 4-8: Colab code cells contain a few extras not found in Notebook.

.- Wondershare

Trial Version

PDFelement

CO PADSAD3 01 Quick Overviewic: ¥ [N o= E e
= . ﬁ & httpsy//colabresearch.google.com/drive/1HLD., a = 1 @ » 0O 0
cO £ PADS4D3_01_Quick_Overview.ipynb B Comment & Shae ¥ 0
File Edit View Insert Runtime Tools Help aAll change
— +Code + Text o L;' - oA
oo B G ¥ 0N

QL T B I ¢ oo MOEIE OE - oy @ O
[x} # Learning to Use Python Fast :

- Learning to Use Python Fast
O :

+ 3% completed at 2.40PM ® X

FIGURE 4-9: Use the GUI to make formatting your text easier.

Creating special cells

The special cells that Colab provides are variations of the text cell.
These special cells, which you access using the Insert menu option,
make creating the required cells faster. Of these additions, section
headers are the most interesting. When you choose Insert = Section
Header Cell, you see a new cell created below the currently selected cell
that has the appropriate header level 1 entry in it. You can increase the
heading level by clicking the double T icon. The GUI looks the same as
the one in Figure 4-9, so you have all the standard formatting features
for your text.

Editing cells

Both Colab and Notebook have Edit and View menus that contain the
options you expect, such as the ability to cut, copy, and paste cells. The
two products have some interesting differences. For example, Notebook
allows you to split and merge cells. Colab contains an option to show or
hide the code as a toggle. These differences give the products slightly
different flavors but don’t really change your ability to use them to
create and modify Python code.

Moving cells
The same technique you use for moving cells in Notebook also works
with Colab. The only difference is that Colab relies exclusively on

.- Wondershare

Trial Version

PDFelement

toolbar buttons, while Notebook also has cell movement options on the
Edit menu.

Using Hardware Acceleration

Your Colab code executes on a Google server. All your computing
device does is host a browser that displays the code and its results.
Consequently, any special hardware on your computing device is
ignored unless you choose to execute code locally.

ne Fortunately, you do have another option when working with
Colab. Choose Edit = Notebook Settings to display the Notebook
Settings dialog box shown in Figure 4-10. This dialog box gives
you a way to add GPU and TPU execution for your code. The
article at
https://research.google.com/colaboratory/faq.html#gpu-
availability provides additional details on how this feature
works. The availability of a GPU isn’t an invitation to run large
computations using Colab. The research site article tells you about
the limitations of the Colab hardware acceleration (including that it
may not be available when you need it).

Notebook settings

Hardware accelerator
Mone v @

[] omit code cell output when saving this notebook

Cancel Save

FIGURE 4-10: Hardware acceleration speeds code execution.

The Notebook Settings dialog box also lets you choose whether to
include cell output when saving the notebook. Given that you store your

.- Wondershare

Trial Version

PDFelement

notebook in the cloud in most cases and that loading large files into your
browser can be time consuming, this feature enables you to restart a
session more quickly. Of course, the trade-off is that you must now
regenerate all the outputs you need.

Executing the Code

For your notebook to be useful, you need to run it at some point.
Previous sections have mentioned the right-pointing arrow that appears
in the current cell. Clicking it runs just the current cell. Of course, you
have other options than clicking the right-pointing arrow, and all these
options appear on the Runtime menu. The following list summarizes
these options:

» Running the current cell: Besides clicking the right-pointing arrow,
you can also choose Runtime = Run the Focused Cell to execute the
code in the current cell.

» Running other cells: Colab provides options on the Runtime menu
for executing the code in the next cells, the previous cells, or a
selection of cells. Simply choose the option that matches the cell or
set of cells you want to execute.

» Running all the cells: In some cases, you want to execute all the
code in a notebook. In this case, choose Runtime = Run All.
Execution starts at the top of the notebook, in the first cell containing
code, and continues to the last cell that contains code in the
notebook. You can stop execution at any time by choosing Runtime
= Interrupt Execution.

.- Wondershare

Trial Version

PDFelement

ne Choosing Runtime = Manage Sessions displays a dialog box
containing a list of all the sessions that are currently executing for
your account on Colab. You can use this dialog box to determine
when the code in that notebook last executed and how much
memory the notebook consumes. Click Terminate to end execution
for a particular notebook. Click Close to close the dialog box and
return to your current notebook.

Use the Runtime = Restart Runtime command to restart your runtime
after working with the code for a while. Doing so resets everything so
that you can verify that your code works as intended after making a lot
of changes.

Viewing Your Notebook

A notebook has a Table of Contents icon in its right margin. Clicking
this icon displays a pane containing tabs that show various kinds of
information about your notebook. You can also choose specific pieces of
information to see from the View menu. To close this pane, click the X in
the upper-right corner of the pane. The following sections describe each
of these pieces of information.

Displaying the table of contents

Choose View = Table of Contents to see a table of contents for your
notebook, as shown in Figure 4-11. Clicking any of the entries takes you
to that section of the notebook.

Wondershare

_ . omm
Trial Version §° PDFelement

CO PADSADE 01 _Quick_Overview.ip M

& C {} & hitps//colabresearchgooglecom/drive/1HtD.. & 1= & & & 0O o :

cO £ P4D54D3_01_Quick Overviewipynb B Comment 2% Shae £ o
File Edit View Insert Runtime Tools Help all changes saved

— [x +Code + Text ot — I PN

‘= Table of contents -

Q Leamning to Use Python Fast
Loading data ~ Learning to Use Python Fast
(x} Training a model
Viewing a result .
= -~ Loading data
B Section
£
hd ° from sklesrn.datasets import fetch californis housing
= N housing = fetch_california housing()
e X, y = housing.data,housing.target
wallakfPThas alas asd bhas dakhs ssk da T Losushdvw ashaas

~ 3% completed at 240PM * X

FIGURE 4-11: Use the table of contents to navigate your notebook.

At the bottom of the pane is a + Section button. Click this button to
create a new header cell below the currently selected cell.

Getting notebook information

When you choose View = Notebook Info, you see a dialog box open as
shown in Figure 4-12. This dialog box contains the notebook size,
settings, and owner.

Notebook info

Owners: John@JohnMuellerBooks.com
Notebook size: 0.00MB
Private outputs are disabled. Code cell execution output will be saved.

Open notebook settings Close

FIGURE 4-12: The notebook information includes both size and settings.

The Notebook Info tab also includes a link to Open Notebook Settings
(see Figure 4-10) in which you can choose whether the notebook relies

Wondershare

Trial Version Q% PDFelement

on hardware acceleration, as described in the “Using Hardware
Acceleration” section, earlier in this chapter.

Checking code execution

Colab keeps track of your code as you execute it. Choose View =
Executed Code History to display the Executed Code tab in the pane at
the right of the window. Note that the number associated with the entries
in the Executed Code tab may not match the numbers associated with the
associated cells. In addition, each unique execution of code receives a
separate number.

Sharing Your Notebook

You can share your Colab notebooks in a number of ways. For example,
you can save them to GitHub or GitHub gists. However, the two most
direct methods are the following:

» Create a share message and send it to the recipient.

» Obtain a link to the code and send the link to the recipient.

In both cases, you click the Share button in the upper right of the Colab
window. The Share dialog box opens (see Figure 4-13).

Wondershare

Trial Version Q% PDFelement

Share @ ©
"P4DS4D3 01 Quick Overview.ipynb"

Add people and groups

People with access

0 John Mueller (you) Owner

John@JohnMueallerBooks.com

General access

IEI Restricted
Only people with access can open with the link

g o
| @ Copylink) m

FIGURE 4-13: Send a message or obtain a link to share your notebook.

When you enter one or more names in the People field, an additional
field opens in which to add a sharing message. You can type a message
and click Send to send the link immediately. If you click Advanced
(when available) instead, you see another dialog box, where you can
define how to share the notebook.

At the bottom of the Share dialog box, you see the Copy Link button.
Clicking Copy Link places the URL on the Clipboard for your device,
and you can paste it into messages or other forms of communication
with others.

Getting Help

The most obvious place to obtain help with Colab is from the Colab
Help menu. This menu contains all the usual entries for accessing
frequently asked questions (FAQs) pages. The menu doesn't have a link
to general help, but you can find general help at
https://colab.research.google.com/notebooks/welcome.ipynb

Wondershare

Trial Version N PDFelement

(which requires you to log into the Colab site). The menu also provides
options for submitting a bug and sending feedback.

One of the more intriguing Help menu entries is Search Code Snippets.
This option opens the pane shown in Figure 4-14, in which you can
search for example code that could meet your needs with a little
modification. Clicking the Insert button inserts the code at the current
cursor location in the cell that has focus. Each of the entries also shows
an example of the code.

CO PADSAD3 01 _Quick_Overview.ip. M

& 3 C () & https//colabresearchgooglecom/dive/1Ht0.. & 2 & © = 0O o :

‘:Jﬁ £ PADS4AD3_01 Quick_Overviewipynb B Comment 2 Share £ o
File Edit View Insert Runtime Tools Help Al changes saved
.— +Code + Text Vo e A
Code snippets x
D\. 3
. ~ Learning to Use Python Fast = Fiter code snigpets
X
. Adding form fields
O+ Loading data oLl T
Camera Capiure +
- Cross-output communication -+

| ° from sklearn.datasets import fetch california_housing

| housing = fetch_california_housing(} Adding form fields Ingert
X, y = housing.data,housing. target
print(“The size of the dots set is {}".format(X.shepe) Formsexample

£ print(“The names of the data columns are {}", housing. Forms support multiple types of fields with
type checking including sliders, date
= The size of the dota set is (20640, 8) pickers, input fields, dropdewn menus, and

The names of the data colusns are {} ["MedInc', "House dropdown menus that allow input

#@title Example form fields
«+ 0% completed at 3:.41PM ® x

FIGURE 4-14: Use code snippets to write your applications more quickly.

. _ mm Wondershare
Trial version &~ ppDFelement

Part 2
Getting Your Hands Dirty with Data

Wondershare

Trial Version l- PDFelement

IN THIS PART ...

Setting up your data science toolbox
Performing essential data interactions
Taming data for use in data science
Bending data to your will

Putting everything together

Wondershare

Trial Version Q% PDFelement

Chapter 5
Working with Jupyter Notebook

IN THIS CHAPTER
» Working with Jupyter Notebook

» Interacting with multimedia and graphics

Up to this point, the book spends a lot of time working with Python to
perform data science tasks without actually engaging the tools provided
by Anaconda much. Yes, a good deal of what you do involves typing in
code and seeing what happens. However, if you don’t actually know
how to use your tools well, you miss opportunities to perform tasks
easier and faster. Automation is an essential part of performing data
science tasks in Python.

This chapter is about working with Jupyter Notebook. Earlier chapters
give you some experience with this tool, but those chapters don’t explore
Jupyter Notebook in any detail, and you need to know it a lot better for
upcoming chapters. The skills you develop in this chapter will help you
perform tasks in later chapters with greater speed and far less effort.

The chapter also looks at tasks you can perform with your newfound
skills. You develop even more skills as the book progresses, but these
tasks help put your new skills into perspective and appreciate how you
can use them to make working with Python even easier.

rememeer YOU don’t have to manually type the source code for this
chapter. In fact, it’s a lot easier if you use the downloadable source.
The source code for this chapter appears in the
P4DS4D3_05_Understanding the Tools.ipynb source code file.

(See the Introduction for details on where to locate this file.)

Wondershare

Trial Version Q% PDFelement

Using Jupyter Notebook

The Jupyter Notebook Integrated Development Environment (IDE) is
part of the Anaconda suite of tools. The following sections help you
understand some of the interesting things that Jupyter Notebook (simply
called Notebook) can help you do.

Working with styles

Here's one of the ways in which Notebook excels over just about any
other IDE that you'll ever use: It helps you to create nice-looking output.
Rather than have a screen full of a whole bunch of plain-old code, you
can use Notebook to create sections and add styles so that the output is
nicely formatted. What you can end up with is a good-looking report that
just happens to contain executable code. The reason for this improved
output is the use of styles.

When you type code into Notebook, you place the code in a cell. Each
section of code that you create goes into a separate cell. When you need
to create a new cell, you click Insert Cell Below (the button with a plus
sign) on the toolbar. Likewise, when you decide that you no longer need
a cell, you select it and then click Cut Cell (the button with a scissors) to
place the deleted cell on the Clipboard, or choose Edit = Delete Cells to
remove it completely.

The default style for a cell is Code. However, when you click the down
arrow next to the Code entry, you see a listing of styles, as shown in
Figure 5-1.

Markdown g
Code

Raw NBConvert
Heading

FIGURE 5-1: Notebook makes adding styles to your work easy.

The various styles shown help you format content in various ways. The
Markdown style is most definitely used to separate varies entries. To try
it for yourself, choose Markdown from the drop-down list, type the

Wondershare

Trial Version Q% PDFelement

heading for this main chapter section, # Using Jupyter Notebook, in the
first cell; next, click Run. The content changes to a heading. The single
hash (#) tells Notebook that this is a first-level heading. Notice that
clicking Run automatically adds a new cell and places the cursor in it. To
add a second-level heading, choose Markdown from the drop-down list,
type ## Working with styles, and click Run. Figure 5-2 shows that the
two entries are indeed headings and that the second entry is smaller than
the first.

o x T v - O X
C ft D hitpfocalhast o o 0P oiects PADGAD 3 PADSS ; & = &« @ » 0 o i
— Jupyter P4DS4D3_05_Understanding_the_Tools suesmea) . Logaut
KErnea Wikdgels Help Mot Trusted | Python 3 (ipykermed) o
E + 3 @ B 4 & rRun B T B Makdoan v| | B
Using Jupyter Notebook
Working with styles

FIGURE 5-2: Adding headings makes separating content in your notebooks easy.

The Markdown style also lets you add HTML content. This markdown
content can contain anything a web page contains with regard to
standard HTML tags. Another way to create a first-level heading is to
define the cell type as Markdown, type <h1>Using Jupyter
Notebook</h1>, and then click Run. In general, you use HTML to
provide documentation and links to outside material. Relying on HTML
tags makes it possible to include things like lists or even pictures. In
short, you can actually include an HTML document fragment as part of
your notebook, which makes Notebook much more than a simple means
of writing down code.

The use of the Raw NBConvert formatting option is outside the scope of
this book. However, it provides you with the means for including
information that shouldn’t be modified by the notebook converter
(NBConvert). You can output notebooks in a variety of formats, and
NBConvert performs this task for you. You can read about this feature at

Wondershare

Trial Version Q% PDFelement

https://nbconvert.readthedocs.io/en/latest/. The goal of the
Raw NBConvert style is to allow you to include special content, such as
Lamport TeX (LaTeX) content. The LaTeX document system isn’t tied
to a particular editor — it’s simply a means of encoding scientific
documents.

Getting Python help

Notebook provides you with the resources to get the commonly required
help you need. To obtain help, select one of the entries on the Help
menu, shown in Figure 5-3.

As shown in Figure 5-3, you not only get help with Notebook and the
markdown used to create entries for a Markdown cell, but you also get a
complete Python reference and references to the most common libraries
that developers use. When you choose an entry, a new web page opens
containing the help information you require.

User Interface Tour
Keyboard Shortcuts
Edit Keyboard Shortcuts

Notebook Help g
Markdown £y
Python Reference =
IPython Reference =
NumPy Reference =
SciPy Reference Eq

Matplotlib Reference &

SymPy Reference g
pandas Reference =
About

FIGURE 5-3: The Help menu contains a selection of common help topics.

Wondershare

Trial Version Q% PDFelement

ne If you need additional help working with the Notepad interface,
choose Help = User Interface Tour. Use the right and left arrows to
move between helpful balloons showing the various Notepad
features. When you’re finished with your review, press Esc to exit
the tour.

Using magic functions

Amazingly, you really can get magic on your computer! Jupyter
provides a special feature called magic functions. The functions let you
perform all sorts of amazing tasks with your Jupyter console. The
following sections provide an overview of the magic functions. Some of
them are used later in the book as well. However, it pays to spend some
time checking out these functions for yourself.

Obtaining the magic functions list

The best way to start working with magic functions is to obtain a list of
them by typing % quickref and pressing Enter. You see a help (pager)
window similar to the one shown in Figure 5-4. The listing can be a little
confusing to read, so make sure to take your time with it.

ne When you’ve finished reviewing the material, click the X in the
pager window that appears in the lower half of Figure 5-4. To the
left of the X is another button that lets you open the pager window
in its own tab in the browser for easier reading.

Wondershare

Trial Version l- PDFelement

& PADS4DI 05 _Understanding the X

« @ mpyocalhostB388/notebooks/Anaconda%20Projects/P4DSAD3P4. B 12 & @ » 0O 0 ;
— Jupyter P4DS4D3_05_Understanding_the_Tools ussea) A Lo
File Edit View Insert Cell Wernel Widgets Help Mot Trusbed | Python 3 (ipykernel) O

E + = @G DB + 4 krRun B C W Makdwn v| | =

Using magic functions
Obtaining the magic functions list

In [1]: Zquickref

IPython -- An enhanced Interactive Python - Quick Reference Card

obj?, ebj2? : Get help, or more help for object (also works as
tobj, ?robj).

oo, “abec® ¢ List names in “foo' containing “abe’ in them.

Emagic : Information about IPython's "magic® ¥ functions.

Magic fumctions are prefixed by X or XX, and typlcally take thelr arguments
without parentheses, quotes or even commas for convenience. Line magics take a
single X and cell magics are prefixed with two XX.

Fonmnin mamis Fopmmime mnlle.

FIGURE 5-4: Take your time going through the magic function help, which has a lot of
information.

Working with magic functions

Most magic functions start with either a single percent sign (%) or two
percent signs (%%). Those with a single percent sign work at the
command-line level, and the ones with two percent signs work at the cell
level. You generally use magic functions with a single percent sign.

‘@

rememeer Most of the magic functions display status information when
you use them by themselves. For example, when you type %cd and
click Run, you see the current directory. To change directories, you
type %cd plus the new directory location on your system.

Discovering objects

Wondershare

Trial Version Q% PDFelement

Python is all about objects. In fact, you can’t do anything in Python
without working with some sort of object. With this in mind, it’s a good
idea to know how to discover precisely what object you’re working with
and what features it provides. The following sections help you discover
the Python objects you use as you code.

Getting object help

You can request information about specific objects using the object name
and a question mark (?). For example, if you want to know more about a
list object named mylist, simply type mylist? and click Run. You see
a pager window showing the mylist type, content in string form, length,
and a document string providing a quick overview of mylist.

When you need detailed help about my1list, you type help(mylist) and
click Run instead. You see the same help provided as when requesting
information about the Python 1ist. However, you receive the
information that's appropriate to the particular object you need help with,
rather than having to first discover the object type and then request
information for that type. In addition, this information appears as part of
the cell output, rather than in a separate pager window, which can make
referencing the help information easier later.

Obtaining object specifics

The dir () function is often overlooked, but it's an essential way to learn
about object specifics. To see a list of properties and methods associated
with any object, use dir (<object name>). For example, if you create a
list called mylist and want to know what sorts of things you can do with
it, type dir(mylist) and click Run. The cell displays a list of methods and
properties that are specific to mylist.

Using extended Python object help

Using a single question mark causes Python to clip long content. If you
want to obtain the full content for an object, you need to use the double
question mark (??). For example, type mylist?? and click Run to see any
clipped details (although there may not be any additional details).

.- Wondershare

Trial Version

PDFelement

Whenever possible, Python provides you with the full source code for
the object (assuming that the source code is available).

You can also use magic functions with objects. These functions simplify
the help output and provide only the information you need, as shown
here:

» %pdoc: Displays the docstring for the object

» %pdef: Shows how to call the object (assuming that the object is
callable)

» %psource: Displays the source code for the object (assuming that the
source is available)

» %pfile: Outputs the name of the file that contains the source code
for the object

» %pinfo: Displays detailed information about the object (often more
than is provided by help alone)

» %pinfo2: Displays extra detailed information about the object (when
available)

Restarting the kernel

Every time you perform a task in your notebook, you create variables,
import modules, and perform a wealth of other tasks that modify the
environment. At some point, you can't really be sure that something is
working as it should. To overcome this problem, you save your
document by clicking Save and Checkpoint (the button containing a
floppy disk symbol), and then click Restart Kernel (the button with an
open circle with an arrow at one end). You can then run your code again
to ensure that it does work as you thought it would.

Sometimes an error also causes the kernel to crash. Your document starts
acting oddly, updates slowly, or shows other signs of corruption. Again,
the answer is to restart the kernel to ensure that you have a clean
environment and that the kernel is running as it should.

Wondershare

Trial Version Q% PDFelement

warnine Whenever you click Restart Kernel, you see a warning message.
Make sure to pay attention to the warning because you could lose
temporary changes during a kernel restart. Always save your
document before you restart the kernel.

Restoring a checkpoint

At some point, you may find that you made a mistake. Notebook is
notably missing an Undo button: You won’t find one anywhere. Instead,
you create checkpoints each time you finish a task. Creating checkpoints
when your document is stable and working properly helps you recover
faster from mistakes.

warning 10 restore your setup to the condition contained in a checkpoint,
choose File = Revert to Checkpoint. You see a listing of available
checkpoints. Simply select the one you want to use. When you
select the checkpoint, you see a warning message. When you click
Revert, any old information is gone and the information found in
the checkpoint becomes the current information.

Performing Multimedia and Graphic Integration

Pictures say a lot of things that words can’t say (or at least they do it
with far less effort). Notebook is both a coding platform and a
presentation platform. You may be surprised at just what you can do
with it. The following sections provide a brief overview of some of the
more interesting features.

Embedding plots and other images

At some point, you might have spotted a notebook with multimedia or
graphics embedded into it and wondered why you didn’t see the same
effects in your own files. In fact, all the graphics examples in the book
appear as part of the code. Fortunately, you can perform some more

.- Wondershare

Trial Version

PDFelement

magic by using the %matplot1ib magic function. The possible values for
this function are: 'gtk', 'gtk3', 'inline', 'nbagg"', 'osx"', 'qt"',
'qt4', 'qt5', 'tk', and 'wx', each of which defines a different plotting

backend (the code used to actually render the plot) used to present
information onscreen.

When you run ¥matplotlib inline, any plots you create appear as part
of the document. That's how Figure 8-1 (see the section about using
NetworkX basics in Chapter 8) shows the plot that it creates
immediately below the affected code.

=
Tsrure - Note that, according to

https://stackoverflow.com/questions/65934740/is-
matplotlib-inline-still-needed, there are situations in which
you no longer need to run %matplotlib inline with newer
versions of Python and its associated libraries. However, the
documentation at https://pypi.org/project/matplotlib-
inline/ still includes this feature and states outright that third-party

libraries may continue to need it, so the book will continue to use
%matplotlib inline to ensure that the examples work as intended.

Loading examples from online sites

Because some examples you see online can be hard to understand unless
you have them loaded on your own system, you should also keep the
%load magic function in mind. All you need is the URL of an example
you want to see on your system. For example, try
%loadhttps://matplotlib.org/ downloads/pyplot text.py. When
you click Run Cell, Notebook loads the example directly in the cell and
comments the %load call out. You can then run the example and see the
output from it on your own system.

Obtaining online graphics and multimedia

.- Wondershare

Trial Version

PDFelement

A lot of the functionality required to perform special multimedia and
graphics processing appears within Jupyter.display. By importing a
required class, you can perform tasks such as embedding images into
your notebook. Here's an example of embedding one of the pictures from
the author's blog into the notebook for this chapter:

from urllib.request import Request, urlopen
from IPython import display

req = Request('http://blog.johnmuellerbooks.com/' +
'wp-content/uploads/2015/04/Layer-Hens.jpg',
headers={'User-Agent': 'XYZ/3.0'})
image = urlopen(req, timeout=10).read()

display.Image(image)

The code begins by importing the required resources. It then makes a
request for the file from the website. Notice the inclusion of the headers

property. If you don’t include this property, the call will fail with an error
message. The call to urlopen() actually retrieves the image, which is
then displayed using display.Image(). The output you see from this
example appears in Figure 5-5.

Wondershare

Trial Version l- PDFelement

Obtaining online graphics and multimedia

In [9]: from urllib.request import Request; urlopen
from IPython impert display

req = Request{ "http://blog.johnmuellerbooks.com/' +
‘wp-contentfuploads/2815/84 /Layer-Hens. jpg " ;
headers={'User-Agent’: "X¥Z/3.8'})
image = urlopen{req, timecut=10).read()

display.Image(image)

Out[9]:

FIGURE 5-5: Embedding images can dress up your notebook presentation.

When working with embedded images on a regular basis, you might
want to set the form in which the images are embedded. For example,
you may prefer to embed them as PDFs. To perform this task, you use
code similar to this:
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')
You have access to a wide number of formats when working with a
notebook. The commonly supported formats are 'png’', 'retina’,

'jpeg', 'svg', and 'pdf’'.

TECHNICAL . .
sture - NOte, you may or may not see a warning message when running

certain code in this book. That's because Python relies on a huge

Wondershare

Trial Version Q% PDFelement

number of libraries that are all updated on different schedules, so
that if you’re using a copy of Python that’s one minor version
different from the product used in this book, you can see these
messages. The blog post at
https://blog.johnmuellerbooks.com/2023/05/08/warning-
messages-in-jupyter-notebook-example-code/ tells you a lot
more about these messages and what to do with them. Warning
messages are just that, warnings — they don’t keep the
downloadable source from running and are generally nothing to
worry about.

The [Python display system is nothing short of amazing, and this section
hasn't even begun to scratch the surface for you. For example, you can
import a YouTube video and place it directly into your notebook as part
of your presentation if you want. You can see quite a few more of the
display features demonstrated at

http://nbviewer. jupyter.org/github/ipython/ipython/blob/1.x/e
xamples/notebooks/Part%205%20 -
%20Rich%20Display%20System.ipynb.

.- Wondershare

Trial Version

PDFelement

Chapter 6
Working with Real Data

IN THIS CHAPTER

» Manipulating data streams

» Working with flat and unstructured files
» Interacting with relational databases
» Using NoSQL as a data source

» Interacting with web-based data

00 0000000000000 00

Data science applications require data by definition. It would be nice if
you could simply go to a data store somewhere, purchase the data you
need in an easy-open package, and then write an application to access
that data. However, data is messy. It appears in all sorts of places, in
many different forms, and you can interpret it in many different ways.
Every organization has a different method of viewing data and stores it
in a different manner as well. Even when the data management system
used by one company is the same as the data management system used
by another company, the chances are slim that the data will appear in the
same format or even use the same data types. In short, before you can do
any data science work, you must discover how to access the data in all
its myriad forms. Real data requires a lot of work to use, and fortunately,
Python is up to the task of manipulating it as needed.

This chapter helps you understand the techniques required to access data
in a number of forms and locations. For example, memory streams
represent a form of data storage that your computer supports natively;
flat files exist on your hard drive; relational databases commonly appear
on networks (although smaller relational databases, such as those found
in Access, could appear on your hard drive as well); and web-based data
usually appears on the internet. You won’t visit every form of data
storage available (such as that stored on a point-of-sale, or POS, system).

.- Wondershare

Trial Version

PDFelement

An entire book on the topic probably wouldn’t suffice to cover the topic
of data formats in any detail. However, the techniques in this chapter
demonstrate how to access data in the formats you most commonly
encounter when working with real-world data.

ne The Scikit-learn library includes a number of toy datasets (small
datasets meant for you to play with). These datasets are complex
enough to perform a number of tasks, such as experimenting with
Python to perform data science tasks. Because this data is readily
available and it’s a bad idea to make the examples too complicated
to understand, this book relies on toy datasets as input for many of
the examples. Still, the demonstrated techniques work equally well
on real-world data.

You don’t have to type the source code for this chapter, and in fact, using
the downloadable source is a lot easier (see the Introduction for
download instructions). The source code for this chapter appears in the
P4DS4D3_06_Dataset_Load.ipynb file.

warning The Colors. txt, Titanic.csv, Values.xls, Colorblk.jpg, and
XMLData.xml files that come with the downloadable source code
must appear in the same folder (directory) as your Notebook files.
Otherwise, the examples in the following sections fail with an
input/output (IO) error. The file location varies according to the
platform you're using. For example, on a Windows system, you find
the notebooks stored in the C:\Users\Username\P4DS4D3 folder,
where Username is your login name. (The book assumes that
you've used the prescribed folder location of P4DS4D3, as
described in the “Defining the code repository” section of Chapter
3.) To make the examples work, simply copy the four files from the
downloadable source folder into your Notebook folder.

.- Wondershare

Trial Version

PDFelement

Uploading, Streaming, and Sampling Data

Storing data in local computer memory represents the fastest and most
reliable means to access it. The data could reside anywhere. However,
you don't actually interact with the data in its storage location. You load
the data into memory from the storage location and then interact with it
in memory. This is the technique the book uses to access all the toy
datasets found in the Scikit-learn library, so you see this technique used
relatively often in the book.

rememeer Data scientists call the columns in a database features or
variables. The rows are cases. Each row represents a collection of
variables that you can analyze.

Uploading small amounts of data into memory

The most convenient method that you can use to work with data is to
load it directly into memory. This technique shows up a couple of times
earlier in the book but uses the toy dataset from the Scikit-learn library.
This section uses the Colors. txt file, which contains the following
color names and numeric equivalents:

Color Value Color Value

Red 1 Orange 2
Yellow 3 Green 4
Blue 5 Purple 6

Black 7 White 8

The example also relies on native Python functionality to get the task
done. When you load a file (of any type), the entire dataset is available at
all times and the loading process is quite short. Here is an example of
how this technique works.

with open("Colors.txt", 'r') as open_file:
print('Colors.txt content:\n' + open_file.read())

.- Wondershare

Trial Version

PDFelement

The example begins by using the open() method to obtain a file object.
The open () function accepts the filename and an access mode. In this
case, the access mode is read (r). It then uses the read() method of the
file object to read all the data in the file. If you were to specify a size
argument as part of read(), such as read(15), Python would read only

the number of characters that you specify or stop when it reaches the
End Of File (EOF). When you run this example, you see the following

output:

Colors.txt content:

Color Value
Red 1
Orange 2
Yellow 3
Green 4
Blue 5
Purple 6
Black 7
White 8

warning The entire dataset is loaded from the library into free memory.
Of course, the loading process will fail if your system lacks
sufficient memory to hold the dataset. When this problem occurs,
you need to consider other techniques for working with the dataset,
such as streaming it or sampling it. In short, before you use this
technique, you must ensure that the dataset will actually fit in
memory. You won't normally experience any problems when
working with the toy datasets in the Scikit-learn library.

Streaming large amounts of data into memory

Some datasets will be so large that you won't be able to fit them entirely
in memory at one time. In addition, you may find that some datasets load
slowly because they reside on a remote site. Streaming solves both
issues by enabling you to work with the data a little at a time. You
download individual pieces so that you can work with just part of the

Trial Version

.- Wondershare

PDFelement

data as you receive it, rather than waiting for the entire dataset to
download. Here’s an example of how you can stream data using Python:

with open("Colors.txt", 'r') as open_file:
for observation in open_file:
print('Reading Data: ' + observation , end="")

This example relies on the Colors. txt file, which contains a header and

then a number of records that associate a color name with a value. The
open_file file object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves
to the next record. Each record appears one at a time in observation.
The code outputs the value in observation using a print statement.
You should receive this output:

<
Q
—
=
(0]

Reading Data: Color
Reading Data: Red
Reading Data: Orange
Reading Data: Yellow
Reading Data: Green
Reading Data: Blue
Reading Data: Purple
Reading Data: Black
Reading Data: White

0 N O O b~ W NP

Python streams each record from the source. This means that you must
perform a read for each record you want.

Generating variations on image data

Sometimes you need to import and analyze image data. The source and

type of the image does make a difference. A number of examples of

working with images appear throughout the book, but a good starting

point is to simply read a local image in, obtain statistics about that

image, and display the image onscreen, as shown in the following code:
import matplotlib.image as img

import matplotlib.pyplot as plt
%matplotlib inline

image = img.imread("Colorblk.jpg")
print(image.shape)
print(image.size)

Wondershare

Trial Version Q% PDFelement

plt.imshow(image)

plt.show()
The example begins by importing two matplotlib libraries, image and
pyplot. The image library reads the image into memory, and the pyplot
library displays it onscreen.

After the code reads the file, it begins by displaying the image shape
property — the number of horizontal pixels, vertical pixels, and pixel
depth (the number of bits used to represent colors). Figure 6-1 shows
that the image is 100 x 100 x 3 channels (one for each color component:
red, green, and blue). The image size property is the combination of
these three elements, or 30,000 bytes.

(180, 100, 3)
30000

FIGURE 6-1: The test image is 100 pixels high and 100 pixels long.

The next step is to load the image for plotting by using imshow(). The
final call, p1t.show(), displays the image onscreen, as shown in Figure
6-1. This technique represents just one of a number of methods for
interacting with images using Python so that you can analyze them in
some manner.

Sampling data in different ways

Trial Version

.- Wondershare

PDFelement

Data streaming obtains all the records from a data source. You may find
that you don't need all the records. In that case, you can save time and
resources by simply sampling the data (retrieving records a set number
of records apart, such as every fifth record) or by making random
samples. The following code shows how to retrieve every other record in
the Colors. txt file:

n =2
with open("Colors.txt", 'r') as open_file:
for j, observation in enumerate(open_file):
if j % n==0:
print('Reading Line: ' + str(j) +
' Content: ' + observation , end="")

The basic idea of sampling is the same as streaming. However, in this
case, the application uses enumerate() to retrieve a row number. When
j % n == 0, the row is one that you want to keep and the application
outputs the information. In this case, you see the following output:

Reading Line: O Content: Color Value

Reading Line: 2 Content: Orange 2

Reading Line: 4 Content: Green

4
Reading Line: 6 Content: Purple 6
Reading Line: 8 Content: White 8

The value of n is important in determining which records appear as part

of the dataset. Try changing n to 3. The output will change to sample just
the header (Line: ©) and rows 3 and 6.

Q

ne You can perform random sampling as well. All you need to do is
randomize the selector, like this:

from random import random
sample_size = 0.25
with open("Colors.txt", 'r') as open_file:
for j, observation in enumerate(open_file):
if random()<=sample_size:
print('Reading Line: ' + str(j) +
' Content: ' + observation, end="")

.- Wondershare

Trial Version

PDFelement

To make this form of selection work, you must import the random class.
The random() method outputs a value between 0 and 1. However,
Python randomizes the output so that you don't know what value you
receive (assuming you receive any at all). The sample_size variable
contains a number between 0 and 1 to determine the sample size. For
example, 0. 25 selects 25 percent of the items in the file.

The output will still appear in numeric order. For example, you won't see
Green come before Orange. However, the items selected are random,
and you won't always get precisely the same number of return values.
Here is an example of what you may see as output (although your output
will likely vary):

Reading Line: 1 Content: Red 1

Reading Line: 4 Content: Green 4
Reading Line: 8 Content: White 8

Accessing Data in Structured Flat-File Form

In many cases, the data you need to work with won’t appear within a
library, such as the toy datasets in the Scikit-learn library. Real-world
data usually appears in a file of some type, and a flat file presents the
easiest kind of file to work with. In a flat file, the data appears as a
simple list of entries that you can read one at a time, if desired, into
memory. Depending on the requirements for your project, you can read
all or part of the file.

A problem with using native Python techniques is that the input isn’t
intelligent. For example, when a file contains a header, Python simply
reads it as yet more data to process, rather than as a header. You can’t
easily select a particular column of data. The pandas library used in the
sections that follow makes it much easier to read and understand flat-file
data. Classes and methods in the pandas library interpret (parse) the flat-
file data to make it easier to manipulate.

.- Wondershare

Trial Version

PDFelement

rememeer T he least formatted and therefore easiest-to-read flat-file format
is the text file. However, a text file also treats all data as strings, so
you often have to convert numeric data into other forms. A comma-
separated value (CSV) file provides more formatting and more
information, but it requires a little more effort to read. At the high
end of flat-file formatting are custom data formats, such as an Excel
file, which contains extensive formatting and could include
multiple datasets in a single file.

The following sections describe these three levels of flat-file dataset and
show how to use them. These sections assume that the file structures the
data in some way. For example, the CSV file uses commas to separate
data fields. A text file might rely on tabs to separate data fields. An
Excel file uses a complex method to separate data fields and to provide a
wealth of information about each field. You can work with unstructured
data as well, but working with structured data is much easier because
you know where each field begins and ends.

Reading from a text file

Text files can use a variety of storage formats. However, a common
format is to have a header line that documents the purpose of each field,
followed by another line for each record in the file. The file separates the
fields using tabs. Refer to the “Streaming large amounts of data into
memory” section, earlier in this chapter, for an example of the

Colors. txt file used for the example in this section.

Native Python provides a wide variety of methods you can use to read
such a file. However, it’s far easier to let someone else do the work. In
this case, you can use the pandas library to perform the task. Within the
pandas library, you find a set of parsers, or code used to read individual
bits of data and determine the purpose of each bit according to the
format of the entire file. Using the correct parser is essential if you want
to make sense of file content. In this case, you use the read_table()

method to accomplish the task, as shown in the following code:

Trial Version

.- Wondershare

PDFelement

import pandas as pd
color_table = pd.io.parsers.read_table("Colors.txt")
print(color_table)

The code imports the pandas library, uses the read_table() method to
read Colors. txt into a variable named color_table, and then displays
the resulting memory data onscreen using the print function. Here's the
output you can expect to see from this example.

Color Value
Red
Orange
Yellow
Green
Blue
Purple
Black
White

N o g~ NP o
0 N O O~ W N B

Notice that the parser correctly interprets the first row as consisting of
field names. It numbers the records from 0 through 7. Using
read_table() method arguments, you can adjust how the parser
interprets the input file, but the default settings usually work best. You
can read more about the read_table() arguments at
https://pandas.pydata.org/docs/reference/api/pandas.read tabl
e.html.

Reading CSV delimited format

A CSV file provides more formatting than a simple text file. In fact,
CSV files can become quite complicated. There is a standard that defines
the format of CSV files, and you can see it at
https://tools.ietf.org/html/rfc4180. The CSV file used for this

example is quite simple:

» A header defines each of the fields
» Fields are separated by commas
» Records are separated by linefeeds

» Strings are enclosed in double quotes

.- Wondershare

Trial Version

PDFelement

» Integers and real numbers appear without double quotes

Figure 6-2 shows the raw format for the Titanic.csv file used for this
example. You can see the raw format using any text editor.

| titanic.csv - Notepad r=n o>
File Edit Format View Help

S'pclass” "survived” "sex" "age" "sibsp","parch” &
"1" "1st" "survived" "female”,29,0,0 L
"2" "1st" "survived" "male",0.916700006,1,2

"3" "1st" "died" "female" 21,2

"4" "1st" "died" "male"”,30,1,2

"5" "1st" "died" "female” 25,1,2
"6" "1st" "survived" "male",48,0,0
"7 "st" "survived" "female” 63,1,0
"g" "1st" "died" "male",39,0,0

"g" "1st" "survived" "female” 53,20
"10" "1st" "died","male”,71,0,0

"11" "1st" "died" "male" 47 1,0

"12" "1st" "survived" "female",18,1,0
"13" "1st" "survived" "female" 24 0,0
"14" "1st" "survived" "female" 26,0,0
"15" "1st" "survived" "male"” 80,00

FIGURE 6-2: The raw format of a CSV file is still text and quite readable.

Applications such as Excel can import and format CSV files so that they
become easier to read. Figure 6-3 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use
features such as data sorting, you could select header columns to obtain
the desired result. Fortunately, pandas also makes it possible to work
with the CSV file as formatted data, as shown in the following example:

import pandas as pd

titanic = pd.io.parsers.read_csv("Titanic.csv")
X = titanic[['age']]

print(X)

Wondershare

Trial Version Q% PDFelement

S| 9-¢- | E-GaR| eS| Moy -M. = @ x
Hon | Inse | Page| Forn| Dati| Revi | Viev Dewe| Loac| Mua | Tear| <2 9 = EE £
Al - I W
A B C D E F G H—
Fe
1 .pdaEE survived sex age sibsp parch E
2 1 1st survived female 29 0 0
3 2 1st survived male 0.9167 1 2
4 3 1st died female 2 1 2
5 4 1st died male 30 1 2
3] 5 1st died female 25 1 2
7 6 1st survived male 43 0 0 i
i« > wi| titanic /F3 14T m " [
Ready | °3 | |[EE|O M 1003 (=) [(+)

FIGURE 6-3: Use an application such as Excel to create a formatted CSV presentation.

Notice that the parser of choice this time is read_csv(), which
understands CSV files and provides you with new options for working
with it. (You can read more about this parser at
https://pandas.pydata.org/docs/reference/api/pandas.read csv.
html.) Selecting a specific field is quite easy — you just supply the field
name as shown. The output from this example looks like this (some
values omitted for the sake of space):

age
29.0000
0.9167
2.0000
30.0000
25.0000

A WODN PR O

1304 14.5000
1305 9999.0000
1306 26.5000
1307 27.0000
1308 29.0000
[1309 rows x 1 columns]

Wondershare

Trial Version Q% PDFelement

ne Of course, a human-readable output like this one is nice when
working through an example, but you may also need the output as a
list. To create the output as a list, you simply change the third line
of code toread X = titanic[['age']].values. Notice the
addition of the values property. The output changes to something
like this (some values omitted for the sake of space):

[[29. 1
[0.91670001]

[2. 1
[;6.5]

[27.]
[29. 11

Reading Excel and other Microsoft Office files

Excel and other Microsoft Office applications provide highly formatted
content. You can specify every aspect of the information these files
contain. The values.x1s file used for this example provides a listing of

sine, cosine, and tangent values for a random list of angles. You can see
this file in Figure 6-4.

Wondershare

Trial Version Q% PDFelement

IE|L3H|'}' ~ e S Valuesxls [Co.. = =2
Hon | Inse | Page| Forn| Dati| Revi | Viev Dewe| Loac| Mua | Tear| <2 9 = EE £
519 A & v
A B C D EL
1 Angle (Degrees) Sine Cosine Tangent =
2 40.29472 0.646719 0.762728 0.847303 E|
3 216.71810 -0.597878 -0.801587 0.745868
4 105.17861 0.965114 -0.2615829 -3.686049
5 97.38824 0.991698 -0.128592 -7.711971
6 120.5876383 0.858272 -0.513194 -1.672413
7 316.08650 -0.693572 0.720388 -0.962775
8 317.88761 -0.670587 0.741831 -0.903962
9 60.82377 0.873124 0.487497 1.791034
10 34.41938 0.565253 0.824917 0.685224
11 97 21728 n.998791 -N_NA91A1 -2 31R5AS 1l
M 4 » » | Sheetl ~'Sheet? ~ Sheetd .~ ¥J mEl il | p]
Ready | 73] | |[EDm 100% (=) y (+)

FIGURE 6-4: An Excel file is highly formatted and might contain information of various
types.

When you work with Excel or other Microsoft Office products, you
begin to experience some complexity. For example, an Excel file can
contain more than one worksheet, so you need to tell pandas which
worksheet to process. In fact, you can choose to process multiple
worksheets, if desired. When working with other Office products, you
have to be specific about what to process. Just telling pandas to process
something isn't good enough. Here's an example of working with the
values.x1s file.

import pandas as pd

xls = pd.ExcelFile("Values.x1ls")

trig values = xls.parse('Sheetl', index_col=None,
na_values=['NA'])

print(trig_values)

.- Wondershare

Trial Version

PDFelement

5
TECHMICAL . .
sture - INote that you may have to install the x1rd library to read the
.x1s file. The downloadable source contains a special line, !pip

install x1rd, to perform this task.

The code begins by importing the pandas library as normal. It then
creates a pointer to the Excel file using the ExcelFile() constructor.
This pointer, x1s, lets you access a worksheet, define an index column,
and specify how to present empty values. The index column is the one
that the worksheet uses to index the records. Using a value of None
means that pandas should generate an index for you. The parse()
method obtains the values you request. You can read more about the
Excel parser options at
https://pandas.pydata.org/docs/reference/api/pandas.ExcelFile

~parse.html.

ne You don't absolutely have to use the two-step process of
obtaining a file pointer and then parsing the content. You can also
perform the task using a single step like this: trig_values =
pd.read_excel("Values.xls", 'Sheetl',6 index_col=None,
na_values=["'NA']). Because Excel files are more complex, using
the two-step process is often more convenient and efficient because
you don't have to reopen the file for each read of the data.

Sending Data in Unstructured File Form

Unstructured data files consist of a series of bits. The file doesn’t
separate the bits from each other in any way. You can’t simply look into
the file and see any structure because there isn’t any to see. Unstructured
file formats rely on the file user to know how to interpret the data. For
example, each pixel of a picture file could consist of three 32-bit fields.
Knowing that each field is 32-bits is up to you. A header at the

Trial Version

.- Wondershare

PDFelement

beginning of the file may provide clues about interpreting the file, but
even so, it’s up to you to know how to interact with the file.

The example in this section shows how to work with a picture as an
unstructured file. The example image is a public domain offering from
https://commons.wikimedia.org/wiki/Main Page. To work with
images, you need to access the Scikit-image library (https://scikit-
image.org/), which is a free-of-charge collection of algorithms used for
image processing. You can find a tutorial for this library at
http://scipy-lectures.org/packages/scikit-image/. The first task
is to be able to display the image onscreen using the following code.
(This code can require a little time to run. The image is ready when the
busy indicator disappears from the Notebook tab.)

from skimage.io import imread

from skimage.transform import resize
from matplotlib import pyplot as plt
import matplotlib.cm as cm

example_file = ("https://upload.wikimedia.org/" +
"wikipedia/commons/7/7d/Dog_face.png")

image = imread(example_file, as_gray=True)

plt.imshow(image, cmap=cm.gray)

plt.show()
The code begins by importing a number of libraries. It then creates a
string that points to the example file online and places it in
example_file. This string is part of the imread() method call, along
with as_gray, which is set to True. The as_gray argument tells Python
to turn any color images into gray scale. Any images that are already in
gray scale remain that way.

Now that you have an image loaded, it's time to render it (make it ready
to display onscreen). The imshow() function performs the rendering and

uses a grayscale color map. The show() function actually displays image
for you, as shown in Figure 6-5.

.- Wondershare

Trial Version

PDFelement

10 A

20 A

30 1

40 4

50 1

60

70 A

80 1

0 20 40 60 80

FIGURE 6-5: The image appears onscreen after you render and show it.

You now have an image in memory, and you may want to find out more
about it. When you run the following code, you discover the image type
and size:

print("data type: %s, shape: %s" %

(type(image), image.shape))

The output from this call tells you that the image type is a
numpy .ndarray and that the image size is 90 pixels by 90 pixels. The
image is actually an array of pixels that you can manipulate in various
ways. For example, if you want to crop the image, you can use the
following code to manipulate the image array:

image2 = image[5:70,0:70]

plt.imshow(image2, cmap=cm.gray)
plt.show()

.- Wondershare

Trial Version

PDFelement

The numpy.ndarray in image2 is smaller than the one in image.
However, you may find that Notebook compensates by making the
output appear larger (even though it's actually smaller, as shown by the
markings). Figure 6-6 shows typical results. The purpose of cropping the
image is to make it a specific size. Both images must be the same size
for you to analyze them. Cropping is one way to ensure that the images
are the correct size for analysis.

ﬂ_

0 10 20 30 40 50 60

FIGURE 6-6: Cropping the image makes it smaller.

Another method that you can use to change the image size is to resize it.
The following code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='symmetric')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" %

(type(image3), image3.shape))

.- Wondershare

Trial Version

PDFelement

The output from the print () function tells you that the image is now 30

pixels by 30 pixels in size. You can compare it to any image with the
same dimensions.

After you have all the images the right size, you need to flatten them. A
dataset row is always a single dimension, not two dimensions. The
image is currently an array of 30 pixels by 30 pixels, so you can't make it
part of a dataset. The following code flattens image3 so that it becomes
an array of 900 elements that is stored in image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
(type(image_row), image_row.shape))
Notice that the type is still a numpy.ndarray. You can add this array to a

dataset and then use the dataset for analysis purposes. The size is 900
elements, as anticipated.

Managing Data from Relational Databases

Databases come in all sorts of forms. For example, AskSam
(http://asksam.en.softonic.com/) is a kind of free-form textual
database. However, the vast majority of data used by organizations rely
on relational databases because these databases provide the means for
structuring massive amounts of complex data in an organized manner
that makes the data easy to manipulate. The goal of a database manager
is to make data easy to manipulate. The focus of most data storage is to
make data easy to retrieve.

Trial Version

.- Wondershare

PDFelement

rememser Relational databases accomplish both the manipulation and data
retrieval objectives with relative ease. However, because data
storage needs come in all shapes and sizes for a wide range of
computing platforms, there are many different relational database
products. In fact, for the data scientist, the proliferation of different
Database Management Systems (DBMSs) using various data
layouts is one of the main problems you encounter with creating a
comprehensive dataset for analysis.

The one common denominator between many relational databases is that
they all rely on a form of the same language to perform data
manipulation, which makes the data scientist's job easier. The Structured
Query Language (SQL) (pronounced “sequel”) lets you perform all sorts
of management tasks in a relational database, retrieve data as needed,
and even shape it in a particular way so that performing additional
shaping is unnecessary.

Creating a connection to a database can be a complex undertaking. For
one thing, you need to know how to connect to that particular database.
However, you can divide the process into smaller pieces. The first step is
to gain access to the database engine. You use two lines of code similar
to the following code (but the code presented here is not meant to
execute and perform a task):

from sqlalchemy import create_engine

engine = create_engine('sqlite:///:memory:")
After you have access to an engine, you can use the engine to perform
tasks specific to that DBMS. The output of a read method is always a
DataFrame object that contains the requested data. To write data, you
must create a DataFrame object or use an existing DataFrame object. You
normally use these methods to perform most tasks:

» read_sql_table(): Reads data from a SQL table to a DataFrame
object

Wondershare

Trial Version Q% PDFelement

» read_sql_query(): Reads data from a database using a SQL query
to a DataFrame object

» read_sql(): Reads data from either a SQL table or query to a
DataFrame object

» DataFrame.to_sql(): Writes the content of a DataFrame object to
the specified tables in the database

The sqlalchemy library provides support for a broad range of SQL
databases. The following list contains just a few of them:

» SQLite
» MySQL
» PostgreSQL
» SQL Server

» Other relational databases, such as those you can connect to using
Open Database Connectivity (ODBC)

You can discover more about working with databases at
https://docs.sqlalchemy.org/en/latest/core/engines.html. The
techniques that you discover in this book using the toy databases also
work with relational databases.

Interacting with Data from NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a
wealth of databases of all sorts that don't have to rely on SQL. These Not
only SQL (NoSQL) databases are used in large data storage scenarios in
which the relational model can become overly complex or can break
down in other ways. The databases generally don't use the relational
model. Of course, you find fewer of these DBMSes used in the corporate
environment because they require special handling and training. Still,
some common DBMSes are used because they provide special
functionality or meet unique requirements. The process is essentially the
same for using NoSQL databases as it is for relational databases:

Trial Version

.- Wondershare

PDFelement

1. Import required database engine functionality.
2. Create a database engine.

3. Make any required queries using the database engine and the
functionality supported by the DBMS.

The details vary quite a bit, and you need to know which library to use
with your particular database product. For example, when working with
MongoDB (https://www.mongodb.org/), you must obtain a copy of the
PyMongo library (https://pypi.org/project/pymongo/) and use the
MongoClient class to create the required engine. The MongoDB engine
relies heavily on the find() function to locate data. Following is a

pseudo-code example of a MongoDB session. (You won't be able to
execute this code in Notebook; it's shown only as an example.)

import pymongo

import pandas as pd

from pymongo import Connection

connection = Connection()

db = connection.database_name

input_data = db.collection_name

data = pd.DataFrame(list(input_data.find()))

Accessing Data from the Web

It would be incredibly difficult (perhaps impossible) to find an
organization today that doesn’t rely on some sort of web-based data.
Most organizations use web services of some type. A web service is a
kind of web application that provides a means to ask questions and
receive answers. Web services usually host a number of input types. In
fact, a particular web service may host entire groups of query inputs.

Another type of query system is the microservice. Unlike the web
service, microservices have a specific focus and provide only one
specific query input and output. Using microservices has specific
benefits that are outside the scope of this book to address, but essentially
they work like tiny web services, so that’s how this book addresses them.

Trial Version

mm Wondershare
| |

PDFelement

One of the most beneficial data access techniques to know when
working with web data is accessing XML. All sorts of content types rely
on XML, even some web pages. Working with web services and
microservices means working with XML (in most cases). With this in
mind, the example in this section works with XML data found in the
XMLData.xml file, shown in Figure 6-7. In this case, the file is simple and
uses only a couple of levels. XML is hierarchical and can become quite a
few levels deep.

APIs AND OTHER WEB ENTITIES

A data scientist may have a reason to rely on various web Application
Programming Interfaces (APIs) to access and manipulate data. In fact, the
focus of an analysis might be the API itself. This book doesn’t discuss APIs
in any detail because each API is unique, and APIs operate outside the
normal scope of what a data scientist might do. For example, you might
use a product such as jQuery (https://jquery.com/) to access data and
manipulate it in various ways when working with a web application.
However, the techniques for doing so are more along the lines of writing an
application than employing a data science technique.

It's important to realize that APIs can be data sources and that you may
need to use one to achieve some data input or data-shaping goals. In fact,
you find many data entities that resemble APIs but don’t appear in this
book. Windows developers can create Component Object Model (COM)
applications that output data onto the web that you could possibly use for
analysis purposes. In fact, the number of potential sources is nearly
endless. This book focuses on the sources that you use most often and in
the most conventional manner. Keeping your eyes open for other
possibilities, though, is always a good idea.

Wondershare

Trial Version Q% PDFelement

| XMLData.xml - Notepad =
File Edit Format View Help
<MyDatasetl> 4
<Record>
<Number>1</Number>

<String>First</String>
<Boolean>True</Boolean>
</Record>
<Record>
<Number>2</Number>
<String>Second</String>
<Boolean>False</Boclean>
</Record>
<Record>
ZNumber>3</Number>
<8tring>Third</String>
<Boolean>True</Boolean>
< /Record>
<Record>
<Number>4</Number:>
<8tring>Fourth</String>
<Boolean>False</Boolean>
</Record>
</MyDataset>

FIGURE 6-7: XML is a hierarchical format that can become quite complex.

The technique for working with XML, even simple XML, can be a bit
harder than anything else you've worked with so far. Here's the code for
this example:

from 1xml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String',
'Boolean'))

for i in range(0,4):
obj = root.getchildren()[i].getchildren()
row = dict(zip(['Number', 'String', 'Boolean'],

Trial Version

.- Wondershare

PDFelement

[obj[0].text, obj[1].text,
obj[2].text]))
row_s = pd.Series(row)
row_s.name = i
row_s = row_s.to_frame().transpose()
df = pd.concat([df, row_s])

print(df)

The example begins by importing libraries and parsing the data file
using the objectify.parse() method. Every XML document must
contain a root node, which is <MyDataset>, as shown here:

<MyDataset>

<Record>
<Number>1</Number>
<String>First</String>
<Boolean>True</Boolean>

</Record>

<Record>
<Number>2</Number>
<String>Second</String>
<Boolean>False</Boolean>

</Record>

<Record>
<Number>3</Number>
<String>Third</String>
<Boolean>True</Boolean>

</Record>

<Record>
<Number>4</Number>
<String>Fourth</String>
<Boolean>False</Boolean>

</Record>

</MyDataset>

The root node encapsulates the rest of the content, and every node under
it is a child. To do anything practical with the document, you must obtain
access to the root node using the getroot () method.

The next step is to create an empty DataFrame object that contains the
correct column names for each record entry: Number, String, and
Boolean. As with all other pandas data handling, XML data handling
relies on a DataFrame. The for loop fills the bataFrame with the four
records from the XML file (each in a <Record> node).

Trial Version

mm Wondershare
| |

PDFelement

The process looks complex but follows a logical order. The obj variable
contains all the children for one <Record> node. These children are
loaded into a dictionary object in which the keys are Number, String,
and Boolean to match the DataFrame columns.

At this point, row is converted to a Series, row_s. A numeric name value
is added to row_s, which is then converted to a DataFrame using the
to_frame () function. If you looked at row_s at this point, you'd see that
it has the wrong orientation, so a call to transpose() aligns it with
DataFrame df.

There is now a DataFrame object that contains the row data. It then
concatenates the row to df using the pd.concat () function. To see that

everything worked as expected, the code prints the result, which looks
like this:

Number String Boolean
1 First True
2 Second False
3 Third True
4 Fourth False

W N B o

USING THE JSON ALTERNATIVE

You shouldn't get the idea that all data you work with on the web is in XML
format. You may need to consider other popular alternatives as part of your
development plans. One of the most popular today is JavaScript Object
Notation (JSON) (https://www.json.org/json-en.html). JSON proponents
state that JSON takes less space, is faster to use, and is easier to work
with than XML (see https://www.w3schools.com/js/js json xml.asp for
details). Consequently, you may find that your next project relies on JSON
data, rather than XML, when dealing with certain web services and
microservices.

If your data formatting choices consisted of just XML and JSON, you might
feel that interacting with data is quite manageable. However, a lot of other
people have ideas of how to format data so that you can parse it quickly
and easily. In addition, developers now have a stronger emphasis on
understanding the data stream, so some formatting techniques emphasize
human readability. You can read about some of these other alternatives at

Wondershare

Trial Version Q% PDFelement

https://slashdot.org/software/p/XML/alternatives. One of the more
important of these alternatives is Yet Another Markup Language or YAML
Ain't Markup Language (YAML), depending on whom you talk to and which
resources you use (https://yaml.org/spec/1.2.2/), but be prepared to do
your homework when working through the particulars of any new projects.

Wondershare

Trial Version Q% PDFelement

Chapter 7
Processing Your Data

IN THIS CHAPTER
» Working with NumPy and pandas

» Working with symbolic variables
» Considering the effect of dates
» Fixing missing data

» Slicing, combining, and modifying data elements

00 0000000000000 00

The characteristics, content, type, and other elements that define your
data in its entirety forms the data shape. The shape of your data
determines the kinds of tasks you can perform with it. In order to make
your data amenable to certain types of analysis, you must shape it into a
different form. Think of the data as clay and you as the potter, because
that’s the sort of relationship you have with it. Instead of using your
hands to shape the data, you rely on functions and algorithms to perform
the task. This chapter helps you understand the tools you have available
to shape data and the ramifications of shaping it.

ne Note that shaping data doesn’t mean changing its value. Think
more along the lines of rearranging the data so that you can work
with it in an easier manner. It’s akin to rearranging the contents of a
shelf in your home so that you can see the shelf contents more
easily.

Also in this chapter, you consider the problems associated with shaping.
For example, you need to know what to do when data is missing from a
dataset. It’s important to shape the data correctly to avoid ending up with
an analysis that simply doesn’t make sense. Likewise, some data types,

.- Wondershare

Trial Version

PDFelement

such as dates, can present problems. Again, you need to tread carefully
to ensure that you get the desired result so that the dataset becomes more
useful and amenable to analysis of various sorts.

rememeer ' The goal of some types of data shaping is to create a larger
dataset. In many cases, the data you need to perform an analysis
doesn’t appear in a single database or in a particular form. You need
to shape the data and then combine it so that you have a single
dataset in a known format before you can begin the analysis.
Combining data successfully can be an art form because data often
defies simple analysis or quick fixes.

ne You don’t have to type the source code for this chapter; using
the downloadable source is a lot easier. The source code for this
chapter appears in the
P4DS4D3_07_Getting_Your_Data_in_Shape.ipynb file. See the

Introduction for the location of this file.

warnine Make sure that the XMLData2.xm1 file that comes with the
downloadable source code appears in the same folder (directory) as
your Notebook files. Otherwise, the examples in the following
sections fail with an input/output (I/O) error. The file location
varies according to the platform you're using. For example, on a
Windows system, you find the notebooks stored in the
C:\Users\Username\P4DS4D3 folder, where Username is your login
name. (The book assumes that you've used the prescribed folder
location of P4DS4D3, as described in the “Defining the code
repository” section of Chapter 3.) To make the examples work,
simply copy the file from the downloadable source folder into your

Wondershare

Trial Version Q% PDFelement

Notebook folder. See the Introduction for instructions on
downloading the source code.

Juggling between NumPy and pandas

There is no question that you need NumPy at all times. The pandas
library is actually built on top of NumPy. However, you do need to make
a choice between NumPy and pandas when performing tasks. You need
the low-level functionality of NumPy to perform some tasks, but pandas
makes things so much easier that you want to use it as often as possible.
The following sections describe when to use each library in more detail.

Knowing when to use NumPy

Developers built pandas on top of NumPy. As a result, every task you
perform using pandas also goes through NumPy. To obtain the benefits
of pandas, you pay a performance penalty in most cases (see
https://towardsdatascience.com/speed-testing-pandas-vs-numpy-
ffbf8ee70ee7). Given that computer hardware can make up for a lot of
performance differences today, the speed issue may not be a concern at
times, but when speed is essential, NumPy is always the better choice.

Knowing when to use pandas

You use pandas to make writing code easier and faster. Because pandas
does a lot of the work for you, you could make a case for saying that
using pandas also reduces the potential for coding errors. The essential
consideration, though, is that the pandas library provides rich time-series
functionality, data alignment, NA-friendly statistics, and groupby (),
merge(), and join() methods. Normally, you need to code these
features when using NumPy, which means you keep reinventing the
wheel.

As the book progresses, you discover just how useful pandas can be
performing such tasks as binning (a data preprocessing technique
designed to reduce the effect of observational errors) and working with a
dataframe (a two-dimensional labeled data structure with columns that
can potentially contain different data types) so that you can calculate
statistics on it. For example, in Chapter 9, you discover how to perform

Wondershare

Trial Version % PDFelement

both discretization and binning. Chapter 13 shows actual binning
examples, such as obtaining a frequency for each categorical variable of
a dataset. In fact, many of the examples in Chapter 13 don't work
without binning. In other words, don’t worry too much right now about
knowing precisely what binning is or why you need to use it —
examples later in the book discuss the topic in detail. All you really need
to know is that pandas does make your work considerably easier.

IT'S ALL IN THE PREPARATION

This book may seem to spend a lot of time massaging data and little time
in actually analyzing it. However, the majority of a data scientist’s time is
actually spent preparing data because the data is seldom in any order to
actually perform analysis. To prepare data for use, a data scientist must

Get the data
Aggregate the data

Create data subsets
Clean the data

Develop a single dataset by merging various datasets together

Fortunately, you don’t need to die of boredom while wading your way
through these various tasks. Using Python and the various libraries it
provides makes the task a lot simpler, faster, and more efficient, which is
the point of spending all of the time on seemingly mundane topics in these
early chapters. The better you know how to use Python to speed your way
through these repetitive tasks, the sooner you begin having fun performing
various sorts of analysis on the data.

Validating Your Data

When it comes to data, no one really knows what a large database
contains. Yes, everyone has seen bits and pieces of it, but when you
consider the size of some databases, viewing it all would be physically
impossible. Because you don’t know what’s in there, you can’t be sure
that your analysis will actually work as desired and provide valid results.

Trial Version

.- Wondershare

PDFelement

In short, you must validate your data before you use it to ensure that the

data is at least close to what you expect it to be. This means performing

tasks such as removing duplicate records before you use the data for any
sort of analysis (duplicates would unfairly weight the results).

rememeer However, you do need to consider what validation actually does
for you. It doesn’t tell you that the data is correct or that there won’t
be values outside the expected range. In fact, later chapters help
you understand the techniques for handling these sorts of issues.
What validation does is ensure that you can perform an analysis of
the data and reasonably expect that analysis to succeed. Later, you
need to perform additional massaging of the data to obtain the sort
of results that you need in order to perform the task you set out to
perform in the first place.

Figuring out what’s in your data

Figuring out what your data contains is important because checking data
by hand is sometimes simply impossible due to the number of
observations and variables. In addition, hand verifying the content is
time consuming, error prone, and, most important, really boring. Finding
duplicates is important because you end up

» Spending more computational time to process duplicates, which
slows your algorithms down.

» Obtaining false results because duplicates implicitly overweight the
results. Because some entries appear more than once, the algorithm
considers these entries more important.

As a data scientist, you want your data to enthrall you, so it’s time to get
it to talk to you — not literally, of course, but through the wonders of
pandas, as shown in the following example:

from 1xml import objectify
import pandas as pd

.- Wondershare

Trial Version

PDFelement

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=("'Number', 'String', 'Boolean'))

for i in range(0,4):

obj = root.getchildren()[i].getchildren()

row dict(zip(['Number', 'String', 'Boolean'],
[ob]j[0].text, obj[1].text,
obj[2].text]))

row_s = pd.Series(row)

row_s.name = i

row_s = row_s.to_frame().transpose()

df = pd.concat([df, row_s])

search = pd.DataFrame.duplicated(df)

print(df)

print(f"\n{search[search == True]}")
This example shows how to find duplicate rows. It relies on a modified
version of the XxMLData.xm1 file, XMLData2.xm1, which contains a simple
repeated row in it. A real data file contains thousands (or more) of
records and possibly hundreds of repeats, but this simple example does
the job. The example begins by reading the data file into memory using
the same technique you explored in Chapter 6. It then places the data
into a DataFrame.

At this point, your data is corrupted because it contains a duplicate row.
However, you can get rid of the duplicated row by searching for it. The
first task is to create a search object containing a list of duplicated rows
by calling pd.DataFrame.duplicated(). The duplicated rows contain a
True next to their row number.

Of course,